• Title/Summary/Keyword: Incomplete Helmholtz Theorem

Search Result 1, Processing Time 0.016 seconds

A Study for Improving Computational Efficiency in Method of Moments with Loop-Star Basis Functions and Preconditioner (루프-스타(Loop-Star) 기저 함수와 전제 조건(Preconditioner)을 이용한 모멘트법의 계산 효율 향상에 대한 연구)

  • Yeom, Jae-Hyun;Park, Hyeon-Gyu;Lee, Hyun-Suck;Chin, Hui-Cheol;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • This paper uses loop-star basis functions to overcome the low frequency breakdown problem in method of moments (MoM) based on electric field integral equation(EFIE). In addition, p-Type Multiplicative Schwarz preconditioner (p-MUS) technique is employed to reduce the number of iterations required for the conjugate gradient method(CGM). Low frequency instability with Rao Wilton Glisson(RWG) basis functions in EFIE can be resolved using loop-start basis functions and frequency normalized techniques. However, loop-star basis functions, consisting of irrotational and solenoidal components of RWG basis functions, require a large number of iterations to calculate a solution through iterative methods, such as conjugate gradient method(CGM), due to high condition number. To circumvent this problem, in this paper, the pMUS preconditioner technique is proposed to reduce the number of iterations in CGM. Simulation results show that pMUS preconditioner is much faster than block diagonal preconditioner(BDP) when the sparsity of pMUS is the same as that of BDP.