• 제목/요약/키워드: Income prediction

검색결과 103건 처리시간 0.023초

인공신경망 분석과 결정트리 융합에 의한 금연 프로그램 참여 결정 요인 (The Factors of Participating in a Smoking Cessation Program using Integrated Method of Decision Tree and Neural Network Algorithm)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제6권2호
    • /
    • pp.25-30
    • /
    • 2015
  • 이 연구는 신뢰성 있는 국가통계 데이터를 이용하여 지난 1년 간 금연 시도 경험 결정 요인 모형을 구축하고 개발된 모형을 근거로 금연 프로그램 참여 표적 집단 예측에 관한 기초 자료를 제공하였다. 분석대상은 2010년 서울시복지패널조사를 완료한 19세 이상 흡연자 1,326명이다. 결과변수는 지난 1년간 금연 시도 경험으로 정의하였고, 설명변수는 연령, 성, 최종학력, 현재 취업 상태, 가구 월 평균 총 소득, 배우자 유무, 음주 여부, 주관적 건강상태, 정기적인 운동 여부, 지난 한 달 간 우울증상 여부, 현재 순환기, 내분비계, 근골격계, 호흡기계, 이비인후 질환, 간질환, 비뇨기계질환 등 질병 여부로 설정하였다. 분석방법은 인공신경망 분석과 결정트리모형을 이용하였다. CART 알고리즘을 이용한 금연 프로그램 참여 모형을 구축한 결과, 유의미한 요인은 질병 여부, 주관적 건강 상태, 가구 월 평균 총소득이었다. 이 결과를 기초로 금연 프로그램의 성공적인 시행을 위해서 표적 대상의 특성을 고려한 프로그램 개발 및 교육이 요구된다.

A Study on the Insolvency Prediction Model for Korean Shipping Companies

  • Myoung-Hee Kim
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2024
  • To develop a shipping company insolvency prediction model, we sampled shipping companies that closed between 2005 and 2023. In addition, a closed company and a normal company with similar asset size were selected as a paired sample. For this study, data of a total of 82 companies, including 42 closed companies and 42 general companies, were obtained. These data were randomly divided into a training set (2/3 of data) and a testing set (1/3 of data). Training data were used to develop the model while test data were used to measure the accuracy of the model. In this study, a prediction model for Korean shipping insolvency was developed using financial ratio variables frequently used in previous studies. First, using the LASSO technique, main variables out of 24 independent variables were reduced to 9. Next, we set insolvent companies to 1 and normal companies to 0 and fitted logistic regression, LDA and QDA model. As a result, the accuracy of the prediction model was 82.14% for the QDA model, 78.57% for the logistic regression model, and 75.00% for the LDA model. In addition, variables 'Current ratio', 'Interest expenses to sales', 'Total assets turnover', and 'Operating income to sales' were analyzed as major variables affecting corporate insolvency.

미국 지방정부의 저소득층을 위한 부담가능주택 수요분석 및 정책사례 연구 - 미시건주 및 랜싱도시권을 사례로 - (A Regional Study for Low-Income Affordable Housing Plan - With a Focus on Lansing Metropolitan Area in Michigan, USA -)

  • 이재춘
    • 한국주거학회논문집
    • /
    • 제27권2호
    • /
    • pp.1-9
    • /
    • 2016
  • This paper introduced the affordable housing support programs and system of the State of Michigan and Lansing Metropolitan Area and reviewed the affordable housing plan of Lansing area. This paper also examined their challenges and efforts to solve the affordable housing issues with additional analysis. The affordable housing planning process was also presented with a comprehensive analysis and future prediction of demographic characteristics and housing supply and demand for affordable housing. Especially, the trend and future forecast of the elderly and low-income households who have a significant impact on the affordable housing demand are considered. The U.S. and South Korea have different housing characteristics and situations. A part of the plan and suggestions of Lansing are somewhat unfamiliar, and it is difficult to introduce their suggestions into our policies. However, the affordable housing plan of Lansing Metropolitan Area suggested various solutions to solve the issues, and some of them deserve to be considered on our housing policy making.

릿지 회귀와 라쏘 회귀 모형에 의한 부산 전략산업의 지역경제 효과에 대한 머신러닝 예측 (Machine Learning Prediction of Economic Effects of Busan's Strategic Industry through Ridge Regression and Lasso Regression)

  • 이재득
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.197-215
    • /
    • 2021
  • 본 연구는 규제항을 도입한 릿지 회귀분석과 라쏘 회귀분석을 사용하여 부산 전략산업의 지역경제에 미치는 효과를 특히 고용과 소득에 대한 영향을 중심으로 머신러닝 기법으로 예측하고 분석하였다. 주요 연구결과는 다음과 같다. 첫째, 고용에 대한 전략산업들의 영향을 릿지 회귀모형과 라쏘 회귀모형으로 추정해보면, 전략산업 가운데 서비스플랫폼, 콘텐츠, 스마트금융산업으로 이루어진 지능정보서비스 산업과 MICE, 특화관광으로 구성된 글로벌관광산업의 순으로 고용을 증가시키는데 기여하고 있다. 둘째, 릿지 회귀모형과 라쏘 회귀모형에 의하면 초기투자 단계인 자율주행차, 항공, 드론 산업으로 이루어진 미래수송기기산업은 고용과 소득을 유의하게 증가시키지 않는 것으로 나타났다. 셋째, 전략산업의 소득에 대한 릿지 회귀모형의 추정계수들을 보면, 지능정보서비스산업과 글로벌관광산업의 순으로 부산지역의 소득을 증가시키고 있다. 넷째, 라쏘 회귀모형에서 라이프케어, 스마트해양, 지능형기계, 클린테크산업 등 4개의 전략산업들은 소득에 유의한 영향을 주고 있지 않는 반면, 지능정보서비스산업과 글로벌관광산업 등 2개의 전략산업들은 소득을 증가시키고 있으나, 장기 투자 산업인 미래수송기기산업은 현재 지역경제와 소득에 부의 영향을 줄 수 있는 것으로 나타났다. 그리하여 전략산업을 선정하고 육성하는데 있어, 부산지역 경제목표와 정책 우선순위를 먼저 설정할 필요가 있다는 점을 시사한다.

우리나라 고령층의 경제활동 수준 예측 - 머신러닝 기법과 연계한 예측조합법을 중심으로 - (Prediction on the Economic Activity Level of the Elderly in South Korea - Focusing on Machine Learning Method Combined with Forecast Combination -)

  • 김정우
    • 한국융합학회논문지
    • /
    • 제13권5호
    • /
    • pp.237-247
    • /
    • 2022
  • 본 연구는 급속한 고령화 시대에서 우리나라의 고령층의 경제활동 수준을 다양한 머신러닝 기법으로 정확히 예측하고자 하였다. 고령층의 경제활동 수준과 기존 연구들은 고령층의 삶의 만족도, 사회보장제도 등과 연관된 인과성 검증을 중심으로 이루어진 데 반해, 본 연구는 다양한 머신러닝 기법으로 고령층의 경제활동 수준을 예측하였으며, 특히 예측조합법을 함께 사용함으로써 예측의 안정성을 도모하였다. 60세 이상의 경제활동참가율, 취업률 등을 종속변수로 하고 가구 특성, 소득, 평균임금 등을 설명변수로 설정하여 서로 다른 특성을 지닌 5가지의 머신러닝 기법과 2가지의 예측조합법을 적용하여 예측결과들을 비교하였다. 분석 결과, 종속변수별, 예측구간별로 예측성능이 높은 머신러닝 기법 및 예측조합법은 상이하였으나, 예측의 안정성 측면에서는 예측조합법이 상대적으로 우수한 것으로 나타났다. 이에 따라, 본 연구는 고령층의 경제활동 수준을 정확히 예측하고 예측의 안정성을 도모하여 정책적 관점에서도 실용성을 제고한다고 볼 수 있다.

PSC-beam 교량에서 철도소음 예측 및 저감방안 연구 (A Study on railway noise prediction and reduction of PSC-beam bridge)

  • 임광만;엄기영;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.320-328
    • /
    • 2011
  • The down town passage segment which follows in the straight line which follows recently in high speed of the railway and rail construction is increasing. Also according to quality of life improvement of the citizens whom follows in national income increase the resident demand only becomes larger day by day about a environmental creation which is comfortable and house environmental etc. Demand of the citizens is not the problem of today yesterday about like this railway mean of transportation and with the fact that continuously will increase in future. This study is to predict and reduce railway noise from the conventional PSC-beam bridges which passes through urban areas under the government strateges of speed and weight increases of railway. The purpose of this study is to recommend a proper noise prediction method for designing pleasant roadside environments. The railway design including existing line reconstructions should minimize curved alignment to increase train speed to 180~200km/hr under the government's long-term planing such as the 4th Comprehensive National Development Plan (2000~2020), National Intermodal Transportation Plan (2000~2019) and National Railroad Network Establishment Plan (2006~2015), Since the PSC-beam bridges are mainly used for bridge structures urban areas, noise measurements were performed and analyzed to recommend the noise prediction methods for each type and speed of train respectively.

  • PDF

농어촌 뉴타운조성사업을 토대로 본 농촌 활성화를 위한 주거환경 정책 방향 (Review of Rural Housing Policies for Rural Revitalization Based on the Analysis of Rural Newtown Projects)

  • 박정아;최병숙;강인호
    • 한국생활과학회지
    • /
    • 제24권6호
    • /
    • pp.887-901
    • /
    • 2015
  • This study aims to identify limitations and pending problems after reviewing the overall policies and status of rural Newtown projects, and to seek solutions to its problems. This study targeted the villages of 5 districts, which were developed as rural new-towns after 2009 and included the basic status and progress of the pilot districts. This study conducted a literature review to examine the basic status and progress of the pilot districts, and based on this, analyzed the demand prediction, site selection, project implementation, and housing and amenity facilities of the pilot districts. The study methods included literature reviews, on-site surveys, interviews with village representatives, and consultations with experts. According to the analysis results, a low occupancy rate of the Newtown project districts is because the prediction of occupancy demand was incorrectly completed before implementing the projects. Also, the eligibility for occupancy, such as age restriction and mandatory farming was too strict. Other problems included an absence of income generation support policies for rural returnees, a housing supply policy in disregard of agricultural characteristics, and a lack of understanding of maintenance of communal space, etc.

저출생 문제해결을 위한 한자녀 기혼여성의 후속 출산의향 예측: 머신러닝 방법의 적용 (Predicting the Subsequent Childbirth Intention of Married Women with One Child to Solve the Low Birth Rate Problem in Korea: Application of a Machine Learning Method)

  • 전효정
    • 한국보육지원학회지
    • /
    • 제20권2호
    • /
    • pp.127-143
    • /
    • 2024
  • Objective: The purpose of this study is to develop a machine learning model to predict the subsequent childbirth intention of married women with one child, aiming to address the low birth rate problem in Korea, This will be achieved by utilizing data from the 2021 Family and Childbirth Survey conducted by the Korea Institute for Health and Social Affairs. Methods: A prediction model was developed using the Random Forest algorithm to predict the subsequent childbirth intention of married women with one child. This algorithm was chosen for its advantages in prediction and generalization, and its performance was evaluated. Results: The significance of variables influencing the Random Forest prediction model was confirmed. With the exception of the presence or absence of leave before and after childbirth, most variables contributed to predicting the intention to have subsequent childbirth. Notably, variables such as the mother's age, number of children planned at the time of marriage, average monthly household income, spouse's share of childcare burden, mother's weekday housework hours, and presence or absence of spouse's maternity leave emerged as relatively important predictors of subsequent childbirth intention.

거시지표와 딥러닝 알고리즘을 이용한 자동화된 주식 매매 연구 (A Research on stock price prediction based on Deep Learning and Economic Indicators)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.267-272
    • /
    • 2020
  • 거시경제는 한 나라 경제 전체의 움직임을 보여주기 때문에 주식을 분석할 때 선행되어 분석되는 지표 중 하나이다. 실업률, 이자율, 물가, 국민소득, 환율, 통화량, 국제수지 등 국가차원의 경제 상황 전반은 주식시장에 직접적인 영향을 미치고, 경제 지표는 개별 주가와의 상관관계가 있기 때문에 주식을 예측하기 위해 많은 증권사 애널리스트들이 관심 있게 지켜보고, 개별 주가에 영향을 고려하여 매수와 매도를 판단하는 주요한 근거자료가 되고 있다. 주가에 영향을 미치는 경제 지표를 선행지표로 분석하고, 주가예측을 딥러닝 기반의 예측을 통하여 예측 후 실제 주가를 비교하여 차이가 발생하면 거시지표에 대한 가중치를 조절하여 지속적인 반복학습을 통하여 주식의 매수와 매도를 판단한다면, 주식은 더 이상 도박과 같은 투기가 아닌 건전한 투자가 될 수 있다. 따라서 본 연구는 거시지표와 인공지능의 딥러닝 알고리즘방식을 이용하여 자동화된 주식매매가 가능하도록 연구를 수행하였다.

영농형 태양광 발전의 진단을 위한 지능형 예측 시스템 (Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation)

  • 정설령;박경욱;이성근
    • 한국전자통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.859-866
    • /
    • 2021
  • 영농형 태양광 발전은 농지 상부에 태양광 발전 설비를 설치하는 방식으로 농작물과 전기를 동시에 생산함으로써 농가 소득을 증대시키는 새로운 모델이다. 최근 영농형 태양광 발전을 활용하는 다양한 시도들이 이루어지고 있다. 영농형 태양광 발전은 기존의 태양광 발전과는 달리 비교적 높은 구조물 상부에 설치하게 되므로 유지 보수가 상대적으로 어렵다는 단점이 있다. 이러한 문제를 해결하기 위해 지능적이고 효율적인 운용 및 진단 기능이 요구된다. 본 논문에서는 영농형 태양광 발전 설비의 전력 생산량을 수집, 저장하여 지능적인 예측 모델을 구현하기 위한 예측 및 진단 시스템의 설계 및 구현에 대해 논한다. 제안된 시스템은 태양광 발전량과 환경 센서 데이터를 기반으로 발전량을 예측하여 설비의 이상 유무를 판별하며 설비의 노화 정도를 산출하여 사용자에게 제공한다.