• Title/Summary/Keyword: Inclusion solubility

Search Result 82, Processing Time 0.02 seconds

[ ${\beta}-cyclodextrin$ ] inclusion properties with guest molecules using hetero-bi-functional reactive dye

  • Kim, Byung-Soon;Kim, Young-Sung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.32-35
    • /
    • 2007
  • Cyclodextrin is a cyclic oligosaccharid material which shows an ability to incorporate organic guest molecules inside their cavity area. Thus, this ${\beta}-cyclodextrin$ treatment on fiber substrates may provide the changed surface characteristics of the substrates such as solubility, chemical reactivity and spectral property. In this context, the aim of this present work is to make a bridge connection using hetero-bi-functional reactive dye between fiber substrates and ${\beta}-cyclodextrin$. In addition, the corresponding Berberine inclusion behaviors into the inner cavity of ${\beta}-cyclodextrin$ was examined. The %exhaustion of Berberine inclusion as a guest molecule within the ${\beta}-cyclodextrin$ was measured using UV-Vis spectrophotometer. The findings showed that the %exhaustion of Berberine inclusion increased with increasing the prepared dye bridge compound and ${\beta}-cyclodextrin$ host material.

Interaction between Omeprazole and $\gamma$-Cyclodextrin (오메프라졸과 $\gamma$-시클로덱스티린과의 복합체 형성 및 제제학적 특성)

  • 이계주;김은영
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.175-184
    • /
    • 1995
  • The interaction of omeprazole(OMP) with $\gamma$-cyclodextrin($\gamma$-CyD) was investigated by solubility study and the complexation was confirmed by means of UV/VIS spectrophotometer, circular dichroism, differential scanning calorimeter, and $^{1}$H nuclear magnetic resonance spectra. The stability, dissolution rate, and partition coefficient of the complex were measured. The results present that the benzimidazole moiety and a part of pyridine ring containing sulfur atom of OMP might be included into the cavity of $\gamma$-CyD and the formation type of inclusion complex appeared to be B$_{s}$. The stoichiometric ratio of OMP to $\gamma$-CyD in the complex was found to be 1:1 and the stability constant of the complex found to be 97.1 M$^{-1}$. And the dissolution rate of OMP was markedly increased by inclusion complex formation with $\gamma$-CyD, and so it was above 90% in 5 min. from solid complex. Oil to water partition coefficient of OMP-$\gamma$-CyD complex was 60, which is significantly higher than that of OMP itself, 36.4. The degradation rate constant of OMP were greater than OMP-$\gamma$-CyD complex in aqueous solutions of various pHs, and the half lives of OMP and OMP-$\gamma$-CyD at pH 9 were 279.2 and 509.9 days, respectively, showing that the complex was more stable than OMP, therefore it was thought that OMP was stabilized by inclusion formation with $\gamma$-CyD.

  • PDF

Solubilities and Activities of Chloramphenicol Acetyltransferase and $\beta$-Lactamase Overproduced by the T7 Expression System in Escherichia coli (대장균에서의 T7 발현체계에 의하여 과잉생산된 클로람페니콜 아세틸전이효소와 베타-락타메이즈의 수용성과 활성)

  • Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.274-278
    • /
    • 1993
  • Overproduced proteins in many cases result in forming insoluble inclusion bodies, and their formation might be due to high concentration of protein. To investigate how proteins become insoluble, chloramphenicol acetyltransferase (CAT) and .betha.-lactamase were overproduced, and their solubilities and activities were determined. CAT was accumulated from 9 to 45% of total cellular protein in a fully soluble form without inclusion body formation. CAT specific activity was shown to be proportional to the amount of the protein produced. Moderately produced .betha.-lactamase by the phase T7 expression system at 30.deg.C comprised only mature forms in a soluble form. However, overproduced .betha.-lactamase at 37.deg.C became insoluble. Most precursor forms of .betha.-lactamase in the cytoplasm were insoluble, whereas majority of the mature forms in the periplasm space were soluble. Also, chaperone GroE proteins which assist proper protein folding and translocation did not increase .betha.-lactamase solubility significantly under the experimental condition. It seems that the formation of inclusion bodies in the cell is related to the nature of protein itself rather than just to high concentration of protein.

  • PDF

Studies on Dissolution of Fentiazac from ${\beta}-Cyclodextrin$ Inclusion Complex (${\beta}$-씨클로덱스트린 포접화합물로부터 펜티아작의 용출)

  • Yoon, Hyung-Joong;Back, Un-Bong;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 1990
  • To increase the solubility of fentiazac which is used widely as a non-steroidal antiinflammatory drug, its inclusion complex and suppositories were prepared and studied. Inclusion complexes of fentiazac with ${\beta}-cyclodertin$ $({\beta}-CyD)$ were prepared by four diffrent methods; coprecipitation method, kneading method, solvent evaporation method, freeze drying method. Suppositories of $fentiazac/{\beta}-CyD$ with PEG 1500 and Witepsol H-15 were prepared by solvent evaporation method and freeze drying method. Inclusion complex formation of fentiazac with ${\beta}-CyD$ was ascertained by powder X-ray diffractometry, differential scanning calorimetry and IR spectroscopy. The dissolution rate of fentiazac from the inclusion complex increased in distilled water and KP 2nd disintegration test fluids (pH 6.8) but extemly decreased in KP 1st disintegration test fluid (pH 1.2). Inclusion complexes prepared by freeze drying method and solvent evaporation method were similar. Freeze drying method seemed to be suitable for preparation of complex with most higher dissolution rate but coprecipitation method seemed not to be suitable. The dissolution rate of fentiazac increased markedly by ${\beta}-CyD$ complexation. The release rates of suppositories increased in the following order. Complex prepared by freeze dying method in PEG 1500 > complex prepared by solvent evaporation method in PEG 1500 > fentiazac in PEG 1500 > complex prepared by freeze dying method in Witepsol H-15 > complex prepared by solvent evaporation method in Witepsol H-15 > fentiazac in Witepsol H-15.

  • PDF

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.

Solubilization of RhRnBp and Peysn5 by protein fusion in Eshcherichia coli

  • Lee, Chung;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.225-228
    • /
    • 2001
  • RhRnBp and Peysn5 are the proteins related to carbohydrate synthesis. RhRnBp originated form human was expressed as inclusion body in E. coli. Peysn5 originated form actinomadura was expressed as low level and inclusion body in E. coli. Ub, Trx, MalE and NusA is used as fusion partner to RhRnBp and Peysn5. The solubility of all fusion protein is NusA > MalE> Trx > Ub. Expression level of RhRnBp fusions in $37^{\circ}C$ is higher than that in $25^{\circ}C$. However in the case of Peysn5. Expression levels in $25^{\circ}C$ were higher. MalE fusion had highest activity in RhRnBp fusions. There were no activity in Peysn5.

  • PDF

Pharmaceutical Studies on Improved Bioavailability of Indoprofen by ${\beta}-Cyclodextrin$ Complexation ( II ) (난용성약물(難溶性藥物)인 Indoprofen의 ${\beta}-Cyclodextrin$복합체(複合體) 형성(形成)에 따른 생체이용률(生體利用率)의 개선(改善)에 관한 약제학적(藥劑學的) 연구(硏究) (제2보)(第二報))

  • Han, Kun;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.14 no.1
    • /
    • pp.19-30
    • /
    • 1984
  • The pharmaceutical characteristics of solid indoprofen inclusion complex such as dissolution, permeation through a cellophane membrane, model analysis of interfacial tranesfer, absorption behaviors in rat intestine, and the plasma concentration of indoprofen after oral administrations to rabbits were examined in comparison with those indoprofen alone. The inclusion complex obtained by freeze-drying method showed the higher dissolution rate and membrane permeability among the test powders, and increased significantly the amont of indoprofen absorbed in rat intestine and the levels of plasma concentration of indoprofen after oral adminstrations to rabbits. The increase of bioavailability of $indoprofen-{\beta}-cyclodextrin$ complex was considered due to the increased solubility and dissolution rate of solid powder form.

  • PDF

Study of the Percutaneous Absorption, Stability and Physicochemical Properties of $OMP-{\beta}-CD$ Inclusion Complex ($OMP-{\beta}-CD$ 포접화합물의 물리화학적 성질, 안정성 및 피부 투과 실험)

  • Lee, Sang-Young;Lee, Gye-Won;Choi, Hyun-Soon;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.271-277
    • /
    • 1997
  • Because omeprazole(OMP) is very unstable in aqueous condition, $OMP-{\beta}-CD$, the inclusion complex of OMP and ${\beta}-cyclodextrin({\beta}-CD)$ was made and physicochemical properties of it were compared with those of OMP. Skin permeability of OMP and $OMP-{\beta}-CD$ in propylene glycol vehicle and the reciprocal action of ${\beta}-CD$ with various enhancers were examined through hairless mouse. Adhesive patches were prepared with polyisobutylene and the skin permeability and stability of OMP were investigated. The inclusion complex showed higher solubility and lower partition coefficient than OMP itself. DMSO, 1-methyl 2-pyrrolidone and sodium cholate had an enhancing effect. However ethanol and polysorbate 80 hardly showed the enhancing effect of OMP. When sodium lauryl sulfate and sodium cholate as enhancer were added in patch, the former case showed higher permeability of OMP.

  • PDF

Inclusion Complex of Analgesic and antiinflammatory Agents with Cyclodextrins (II) : Effect of $2-Hydroxypropyl-{\beta}-cyclodextrin$ on the Release of Ibuprofen Suppository (시클로덱스트린과 소염진통제간의 포접복합체에 관한 연구 (II) : 2-히드록시프로필-${\beta}$-시클로덱스트린이 이부프로펜 좌제의 방출에 미치는 영향)

  • Oh, In-Joon;Lee, Mi-Young;Lee, Yong-Bok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.165-171
    • /
    • 1997
  • Ibuprofen, a nonsteroidal antiinflammatory, analgesic and antipyretic drug, has several limitations in clinical application because of low solubility in water and gastrointestinal irritation. Effect of ibuprofen/$2-Hydroxypropyl-{\beta}-cyclodextrin\;(HP{\beta}CD)$ inclusion compound on release of suppository was investigated. Complex formation was confirmed by $^{1}H-\;and\;^{13}C-NMR$ spectroscopy. The release of ibuprofen from suppository base in vitro was significantly increased by the complexation with $HP{\beta}CD$. The release of ibuprofen from hydrophilic base was faster than that from hydrophobic base. In vivo studies, the release rate of ibuprofen from suppository was accelerated after rectal administration in complex form. This results suggested that ibuprofen/$HP{\beta}CD$ complex can be practically used for suppository to have faster effect of ibuprofen with reduced side effect.

  • PDF

Effects of Sulfobutyl Ether $\beta$-Cyclodextrin on Physicochemical Properties of Dexamethasone Dipropionate

  • Moon, Jee-Hyun;Oh, Ik-Sang;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.116-116
    • /
    • 1997
  • Complex formation of practically insoluble dexamethasone dipropionate (DDP) with ${\beta}$-cyclodextrin (${\beta}$-CD), dimethyl-${\beta}$-cyclodextrin (DMCD), trimethyl-${\beta}$-cyclodextrin (TMCD), 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD) and sulfobutyl ether ${\beta}$-cyclodextrin (SBCD) in water was investigated by solubility method at various temperatures. Water solubility of DDP was found to be 1.78 $\mu\textrm{g}$/$m\ell$ at 37$^{\circ}C$. Propylene glycol (PG)-water cosolvent increased the solubility of DDP, but the solubilization was not sufficient (8.93 $\mu\textrm{g}$/$m\ell$ in 20% PG). The addition of CD markedly increased the solubility of DDP in water, and A$\sub$L/ type phase solubility diagrams were obtained with ${\beta}$-CD, TMCD, HPCD and SBCD, where the apparent stability constants of the soluble complexes at 25$^{\circ}C$ were determined to be 1388, 216, 1054, and 1992 M$\^$-1/, respectively. However, DMCD remarkably increased the solubility of DDP, and showed an A$\sub$P/ type diagram, suggesting that DMCD forms a soluble complex of high order with DDP. The stability constant for the DDP-DMCD complex at 25$^{\circ}C$ was determined to be 19132 M$\^$-1/. The thermodynamic parameters were calculated for the inclusion complex formation in aqueous solution. CD (1${\times}$10$\^$-2/M) remarkably decreased the partition coefficients of DDP between isopropyl myristate/water in the order of TMCD < ${\beta}$-CD < HPCD < SBCD < DMCD, and in squalane/water system in the order of HPCD < TMCD < ${\beta}$-CD < DMCD < DMCD $\leq$ SBCD. This finding represents that, in a o/w type cream, cyclodextrin complexation with DDP may result in high concentration of DDP in aqueous phase. The permeation of DDP through a cellophane membrane was highly suppressed by the addition of CD, and the degree of suppression was different among CDs, indicating that CD may control the skin permeation of DDP. The dissolution rates of solid dispersions with CDs were much faster than those of drugs alone and corresponding physical mixtures. All DDP-CD solid dispersions exceeded the equilibrium solubility. Consequently these results suggest that complex formation of DDP with CDs may provide useful means to markedly enhance the solubility, and CDs are useful in the semi-solid preparations such as creams and gels for topical application.

  • PDF