• Title/Summary/Keyword: Inclusion solubility

Search Result 82, Processing Time 0.019 seconds

A Study on the Inclusion Complexation of Octyldimethyl p-aminobenzoate with ${\beta}-Cyclodextrin$ (Octyldimethl p-aminobenzoate 와 ${\beta}-Cyclodextrin$의 포접화합물(包接化合物)에 관(關)한 연구(硏究))

  • Lee, Chang-Hak;So, Boo-Young;Kim, Young-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • Inclusion complex formation of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$in aqueous solution and in the solid state was studied by the solubility method, spectroscopic (UV, FT-IR) and X-ray diffractornetry. The solid complex of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$ was obtained in molar ratio of 1:2 (guest/host). A spatial relationship between host and guest molecule was clearly reflected in the magnitude of the apparent stability constant (K') and in the stoichiometry of the inclusion complex. Furthermore, a typical type Bs phase-solubility diagram was obtained for octyldimethyl p-aminobenzoate and ${\beta}-cyclodextrin$ in water at $25^{\circ}C$. The results indicated that the solubility of the guest molecule was higher by the formation of ${\beta}-cyclodextrin$ inclusion complex.

Preparation and Evaluation of Inclusion Complex of Lansoprazole with 2-HP-β-Cyclodextrin and Meglumine (2-HP-β-시클로덱스트린과 메글루민을 이용한 란소프라졸의 포접화합물 제조 및 평가)

  • Lee, Jung-Woo;Kim, Jung-Su;Chang, Hye-Jin;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • To enhance the solubility and stability of lansoprazole (LAN), new proton pump inhibitor, we were prepared various molar ratio of inclusion complex with $2-hydroxypropyl-{\beta}-cyclodextrin$ (HPCD) and organic alkali agent, meglumine (MEG). Inclusion complex formation of LAN with HPCD was investigated by Differential Scanning Calorimetry and X-ray diffractometry. The aqueous solubilities of inclusion complexes, and the stabilities of 1:4 and 1:5 inclusion complexes in aqueous solutions containing different concentrations of MEG were examined. The stability of 1:5 LAN-HPCD inclusion complex containing MEG, which was equaled to amount of LAN, was performed in 0.9% NaCl and 5% dextrose solution. The formation of inclusion complex of LAN with HPCD was $A_L$ type and the molar ratio of complex was 1:1. The stability constant was $41.557\;M^{-1}$. As molar ratio of LAN to HPCD was increased, solubility of inclusion complex was increased. 1:5 LAN-HPCD inclusion complex was more stable than 1:4 LAN-HPCD inclusion complex. And as contained MEG amount in LAN solution was increased, stability of 1:4 and 1:5 LAN-HPCD inclusion complexes was improved. Also stability of 1:5 LAN-HPCD-MEG inclusion complex in 0.9% NaCl solution and 5% dextrose solution was similar to it in water at room temperature, but it was unstable at $40^{\circ}C$.

Binding Geometry of Inclusion Complex as a Determinant Factor for Aqueous Solubility of the Flavonoid/β-Cyclodextrin Complexes Based on Molecular Dynamics Simulations

  • Choi, Young-Jin;Lee, Jong-Hyun;Cho, Kum-Won;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1203-1208
    • /
    • 2005
  • A computational study based on molecular dynamics (MD) simulations was performed in order to explain the difference in aqueous solubilities of two flavonoid/$\beta$-cyclodextrin ($\beta$-CD) complexes, hesperetin/$\beta$-CD and naringenin/$\beta$-CD. The aqueous solubility of each flavonoid/$\beta$-CD complex could be characterized by complexwater interaction not by flavonoid-CD interaction. The radial distribution of water around each inclusion complex elucidated the difference of an experimentally observed solubility of each flavonoid/$\beta$-CD complex. The analyzed results suggested that a bulky hydrophobic moiety (-$OCH_3$) of B-ring of hesperetin nearby primary rim of $\beta$-CD was responsible for lower aqueous solubility of the hesperetin/$\beta$-CD complex.

Preparation and Stability of $Iodine-{\beta}-Cyclodextrin$ Inclusion Complex (요오드-${\beta}$-시클로덱스트린 포접 복합체의 제조 및 안정성)

  • Jee, Ung-Kil;Park, Kyung-Lae;Park, Mork-Soon;Baek, Myung-Ki;Park, Jin-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.205-211
    • /
    • 1995
  • To increase the solubility of iodine and iodine releasing agents, which are used widely as a topical broad spectrum antiseptics and disinfectant sanitizers, its inclusion complexes were prepared and studied. Inclusion complexes of iodine with ${\beta}-cyclodextrin$ were prepared by coprecipitation method and complex formation was acertained by differential scanning calorimetry and microscopic observation. Iodine content of inclusion complex was determined by means of iodometry. Tablets containing inclusion complex were manufactured with sugar, citric acid, magnesium stearate, dextrose. Stability of inclusion complexes and tablets was evaluated by accelerated stability test, and comparing with PVP-iodine. During preparation, use of 50% ethanol solution is preferable to water as the medium because the former resulted in more stable complex for a month under accelerated storage conditions. Solubility of iodine in KI aqueous solution was 0.048 g/ml and lower than in 50% ethanol solution. Inclusion complex and its tablets were very stable at severe condition for one month, and comparable to PVP-iodine in the aspect of stability. Inclusion complex tabletswere not affected with citric acid, sugar, dextrose, and direct tableting method was recommendable because wet granulation using ethanol gave some release of included iodine during process.

  • PDF

Inclusion Complexation of Cyclodextrin with Prothionamide in Aqueous Solution

  • Kim, Shin-Tae;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.4
    • /
    • pp.132-144
    • /
    • 1982
  • The inclusion of ${\beta}-cyclodextrin$ $({\beta}-CyD)$ with prothionamide in aqueous phase was investigated by circular dichroism(CD), ultraviolet (UV) absorption, and solubility technique. The results suggested that a region of drug chromophore was located within the asymmetric center of ${\beta}-cyclodextrin$. Solubility and spectral changes were quantitatively treated to obtain stoichiometric ratio, which was found to be 1 : 1, and formation constants which were determined by solubility, CD, and UV method were 257, 367, and 389 $M^{-1}$, respectively. Also, the formation constant of the inclusion complex was determined by CD method at various pH. The result was that $K_c$ depended upon the pH of medium, and this fact also supported that thioamide moiety was accomodated in the cavity of ${\beta}-cyclodextrin$.

  • PDF

Pharmaceutical Studies on Inclusion Complex of Norfloxacin with ${\beta}-Cyclodextrin$ (Norfloxacin과 ${\beta}-Cyclodextrin$간의 Inclusion Complex에 관한 약제학적 연구)

  • Jee, Ung-Kil;Park, Mork-Soon;Kwon, Joong-Moo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 1987
  • To increase the bioavailability of norfloxacin, inclusion complex of antimicrobial agent norfloxacin with ${\beta}-Cyclodextrin$ was prepared and studied by the solubility method, spectrophotometric methods(UV, IR, $^1H-NMR$), differential thermal analysis, powder X-ray diffractometry, the physical properties, the antimicrobial activity, DNA binding and in situ recirculation technique. The conclusions are summerized as following; 1) The inclusion complexation was identified by means of solubility, spectrophotometry(UV, IR, NMR), DTA and X-ray diffraction. 2) The molar ratio of $norfloxacin-{\beta}-cyclodextrin$ complex was 1 : 1. 3) The stability constant of $norfloxacin-{\beta}-cyclodextrin$ complex was $21.5\;M^{-1}$, and both true and apparent partition coefficients of the inclusion complex were larger than those of norfloxacin. 4) The time required to dissolve 60% $(T_{60}%)$ of the inclusion complex was 120 min. in distilled water and in the artificial intestinal juice, while norfloxacin did not reach to 60% dissolution within 120 min. 5) The antimicrobial activity of the inclusion complex against Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus showed no significant difference compared to that of norfloxacin alone. 6) Studies on binding properties between the inclusion complex and norfloxacin alone to DNA according to equilibrium dialysis showed no significant differency. 7) In situ absorption rates (Ka) of inclusion complex and norfloxacin alone were 0.229 and $0.102hr^{-1}$, respectively.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

Improvement in availability and stability of to 106w by inclusion with $\beta-cyclodextrin$ and its derivatives ($\beta-cyclodextrin$ 및 유도체의 포접체 형성에 의한 LG 106W의 유용성 및 안정성 개선에 관한 연구)

  • 정성훈;이천구;조완구;강세훈
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.120-136
    • /
    • 1999
  • A newly synthesized polyhydroxy aromatic compound(LG 106w) has good skin lightening effect. Inclusion complexation of LG 106w with $\beta$-cyclodextrin and its hydroxypropyl and dimethyl derivatives was studied by the solubility method, scanning electron microscopy and differential thermal analysis. A relationship between host and guest was clearly reflected in the magnitude of the stability constant(DM-$\beta$> HP-$\beta$>$\beta$ -cyclodextrin). Formulation problems, which resulted from its very low solubility in aqueous solution, were resolved by the inclusion formation. LG 106W from inclusions is much more water-soluble than pure one. The improvement of pH and temperature stability correlated with the increased solubility was also observed. Inclusion complex of LG 106w had similar activity to pure LG 106w on the inhibition of melanin synthesis in B-16 melanoma cell but showed lower irritation on cultured cell test in vitro. According to the results, cyclodextrins might be one of the reliable candidates for improving the availability of LG 106w.

  • PDF

Complexation of Piroxicam and Tenoxicam with $Hydroxypropyl-{\beta}-cyclodextrin$ (히드록시프로필-베타-시클로덱스트린과 피록시캄 및 테녹시캄 간의 복합체 형성)

  • Kim, Ju-Hyun;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • One of the methods to increase the solubility of a drug is to use complexation with a cyclodextrin. Due to the hydrophobic nature of the interior cavity of the cyclodextrin, it has been known that undissociated lipophilic drugs can be included within the cyclodextrin by hydrophobic interaction. Recently, inclusion of hydrophilic or dissociated form of a drug has been investigated. In this study, the synergism of pH and complexation with $hydroxypropy-{\beta}-cyclodextrin\;(HP\;{\beta}\;CD)$ to increase the solubility of two oxicam derivatives was investigated. In addition, the effect of partition coefficient of dissociated and undissociated form of the drug on the extent of complexation with HP ${\beta}$ CD was studied. The solubility was measured by equilibrium solubility method. The solubility of tenoxicam and piroxicam increased exponentially with an increase in solution pH above the pKa of the drug in the presence and absence of HP ${\beta}$ CD. The solubility of the drugs increased linearly as a function of HP ${\beta}CD$ concentration at fixed pH. Although the stability constant of ionized species is less than that of the unionized species, the concentration of the ionized drug complex is greater than that of the unionized drug complex due to higher concentration of ionized species at pH 7.3.

  • PDF