• Title/Summary/Keyword: Inclined surface angle

Search Result 136, Processing Time 0.023 seconds

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

A numerical study on the analysis of behavior characteristics of inclined tunnel considering the optimum direction of steel rib (강지보재 최적 설치방향을 고려한 경사터널의 거동특성에 대한 수치해석적 연구)

  • Park, Sang-Chan;Kim, Sung-Soo;Shin, Young-Wan;Shin, Hyu-Soung;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2008
  • The steel rib, one of the main support of tunnel, plays a very important role to stabilize tunnel excavation surface until shotcrete or rockbolt starts to perform a supporting function. In general, a steel rib at the horizontal funnel is being installed in the direction of gravity which is known favorable in terms of constructability and stability. However, as the direction of principal stress at the inclined tunnel wall is different from that of gravity, the optimum direction of steel rib could be different from that at the horizontal tunnel. In this study, a numerical method was used to analyze the direction of force that would develope displacement at the inclined tunnel surface, and that direction could be the optimum direction of steel rib. The support efficiency of steel rib could be maximized when the steel rib was installed to resist the displacement of the tunnel. Three directions which were recommended for the inclined tunnels in the Korea Tunnel Design Standard were used for the numerical models of steel rib direction. In conclusion, the results show that all displacement angle of the models are almost perpendicular to the tunnel surface regardless of face angle. So if the steel rib would be installed perpendicular to the inclined tunnel surface, the support efficiency of steel rib could be maximized.

  • PDF

A Study of Rivulet Flow on Inclined Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • Kim, Jin-Ho;Kim, Ho-Young;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

Analysis of Maximum Solar Radiation on Inclined Surfaces in Korea (국내 최대 경사면일사량 분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.3-7
    • /
    • 2009
  • The amount of incident rays over inclination according to direction has been widely utilized as important data in installing solar thermal systems. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized solar thermal systems will be provided for designers and employees working in the solar collector related industries.

  • PDF

A Study of Rivulet Flow on an Inclined Solid Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1042-1048
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the axial velocity of a liquid is slower than the retraction velocity of its thread, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curled motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet\`s curved motion. A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

An experimental study on freezing phenomena of water saturated square cavity with inclined cold surface (경사냉각면에 따른 함수정방형내의 동결현상에 관한 실험적 연구)

  • Lee, C.H.;Kim, J.J.;Kim, B.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.435-445
    • /
    • 1997
  • It was studied the phenomena of transient freezing of an inclined water-saturated enclosure. One side of the test section was cooled and the other sides were insulated. The effects of the initial temperature, the inclination angle on the temperature field and the shape of the ice-water interface were observed. In the beginning of freezing, with increasing the inclination angle the freezing rate was increased and in the stable density layer centered $4^{\circ}C$, the freezing was fast as the convective fluid flow became small. When the initial temperature was above the $4^{\circ}C$, the frozen thickness in the upper part of inclined surface was thinner than that in the lower part, but with time the frozen thickness of upper part was thicker than that of lower part, below the $4^{\circ}C$, the frozen thickness in the upper part was thicker than that of lower part from the begining, and above the $8^{\circ}C$ in the beginning upper part was thinner with concave, but with time thicker the upper part, vanishing concave.

  • PDF

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Flow Characteristics of a Laminar Rivulet Down an Inclined Surface (경사면상의 층류 세류유동 특성)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1035-1042
    • /
    • 2005
  • In the present study, the principle of minimum energy is employed to configure the shape of rivulet flowing down an inclined surface. The profile of laminar rivulet is determined by numerical integration. The maximum center thickness, which corresponds to the minimum thickness of falling film, is found to exist regardless of liquid flow rate and is compared with the analytical and experimental data. At small liquid flow rate the center thickness of rivulet and its width increase almost linearly with flow rate. Once the center thickness of rivulet becomes very close to its maximum value, its growth rate retards abruptly. However the width of rivulet increases proportionally to the liquid flow rate and most part of its free surface is as flat as that of stable film. The growth rate of rivulet thickness with respect to liquid flow rate becomes larger at bigger contact angle. The width of rivulet increases rapidly with its flow rate especially at small contact angle, As the liquid-vapor interfacial shear stress increases, the center thickness of rivulet decreases with its flow rate, which is remarkable at small contact angle. However the effect of interfacial shear stress on the width of rivulet is almost negligible.

Numerical Study of Behaviour Characteristics of Mechanical Seals with Inclined Friction Faces (경사진 마찰접촉면을 갖는 기계경사면시일의 거동특성에 관한 수치적 연구)

  • Kim Chung Kyun
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2004
  • Thermal distortion of non-contacting mechanical seals with inclined rubbing surfaces is affected by friction heat between seal ring and seal seat. The circulation fluid along the inclined rubbing surfaces maintains cooling friction heat and lubrication between the sealing surfaces of mechanical seal with an inclined surface. Mechanical seals with inclined sealing surfaces may be useful for reducing the frictional heating and power loss because of the introduction of cooling fluids to the sealing gap between seal ring and seal seat. From the FEM computed result shows that the thermal behavior and von Mises stress of sealing faces with an inclined angle 60 are much reduced in comparison of the conventional mechanical face seal with rectangular sealing surfaces.

Finite Element Analysis of the Inclined Subsurface Cracks in a Homogeneous Body Under a Moving Compressive Load

  • Lee, Kyung-Sick;Chung, Gyu-Sung
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • The inclined subsurface cracks in a homogeneous body subjected to a moving compressive load is analyzed with the finite element method (FEM) considering friction on the crack surface. The stress intensity factors for the inclined subsurface cracks are evaluated numerically for various cases such as different inclined angles and changes in the coefficient of friction. The effects of the inclined angle and the coefficient of friction on the stress intensity factor are discussed. The difference between the behaviors of the parallel subsurface crack and those of the inclined subsurface crack is also examined.