• Title/Summary/Keyword: Inclined rockbolt

Search Result 3, Processing Time 0.014 seconds

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

A numerical study on the analysis of behavior characteristics of inclined tunnel considering the optimum direction of steel rib (강지보재 최적 설치방향을 고려한 경사터널의 거동특성에 대한 수치해석적 연구)

  • Park, Sang-Chan;Kim, Sung-Soo;Shin, Young-Wan;Shin, Hyu-Soung;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2008
  • The steel rib, one of the main support of tunnel, plays a very important role to stabilize tunnel excavation surface until shotcrete or rockbolt starts to perform a supporting function. In general, a steel rib at the horizontal funnel is being installed in the direction of gravity which is known favorable in terms of constructability and stability. However, as the direction of principal stress at the inclined tunnel wall is different from that of gravity, the optimum direction of steel rib could be different from that at the horizontal tunnel. In this study, a numerical method was used to analyze the direction of force that would develope displacement at the inclined tunnel surface, and that direction could be the optimum direction of steel rib. The support efficiency of steel rib could be maximized when the steel rib was installed to resist the displacement of the tunnel. Three directions which were recommended for the inclined tunnels in the Korea Tunnel Design Standard were used for the numerical models of steel rib direction. In conclusion, the results show that all displacement angle of the models are almost perpendicular to the tunnel surface regardless of face angle. So if the steel rib would be installed perpendicular to the inclined tunnel surface, the support efficiency of steel rib could be maximized.

  • PDF

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.