• Title/Summary/Keyword: Inclined cracks

Search Result 47, Processing Time 0.023 seconds

Finite Element Analysis of the Inclined Subsurface Cracks in a Homogeneous Body Under a Moving Compressive Load

  • Lee, Kyung-Sick;Chung, Gyu-Sung
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • The inclined subsurface cracks in a homogeneous body subjected to a moving compressive load is analyzed with the finite element method (FEM) considering friction on the crack surface. The stress intensity factors for the inclined subsurface cracks are evaluated numerically for various cases such as different inclined angles and changes in the coefficient of friction. The effects of the inclined angle and the coefficient of friction on the stress intensity factor are discussed. The difference between the behaviors of the parallel subsurface crack and those of the inclined subsurface crack is also examined.

Mixed-Mode Fatigue Crack Growth Behavior of Cracks in Mechanical Joints Considering Critical Inclined Angle (임계 경사각을 고려한 기계적 체결부 균열의 혼합모드 피로균열성장 거동)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • Cracks in mechanical joints is generally under mixed-mode and there is the critical inclined angle at which mode I stress intensity factor becomes maximum. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed for horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using mode I and mode II stress intensity factors obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

  • PDF

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

Fracture analysis for nozzle cracks in nuclear reactor pressure vessel using FCPAS

  • Abdurrezzak Boz;Oguzhan Demir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2292-2306
    • /
    • 2024
  • This study addresses cracks and fracture problems in engineering structures that may cause significant challenges and safety concerns, with a focus on pressure vessels in nuclear power plants. Comprehensive parametric three-dimensional mixed mode fracture analyses for inclined and deflected nozzle corner cracks with various crack shape aspect ratios and depth ratios in nuclear reactor pressure vessels are carried out. Stress intensity factor (SIF) solutions are obtained using FRAC3D, which is part of Fracture and Crack Propagation Analysis System (FCPAS), employing enriched finite elements along the crack front. Also, improved empirical equations are developed to allow the determination of mixed mode SIFs, KI, KII, and KIII, for any values of the parameters considered in the study. This study provides practical solutions to assess the remaining life and fail-safe conditions of nuclear reactors by providing accurate SIF determination.

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Measurement of the Crack Height using the Two-Probe Ultrasonic Diffraction Method. (초음파회절방법(超音波回折方法)을 이용한 귀렬(龜裂)의 높이 측정(測定))

  • Lee, Jae-Ok;Lee, Seung-Kyu;Kim, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 1988
  • The optimum test conditions of measuring the crack height were determined for the two-probe ultrasonic diffraction method. The applicability and the accuracy of the two-probe ultrasonic diffraction method on the inclined artificial cracks and the fatigue cracks were evaluated. It us possible to measure the height of the normal and inclined artificial cracks with the maximum error of ${\pm}\;0.5mm$ with the two-probe ultrasonic diffraction method. It was found, however, that the accuracy of this method in meaasuring the height of the fatigue crack depends on the degree of closure of the crack tip. It was desirable to choose a refraction angle as small as possible, but the angle should not be so small that the distortion of the lateral waveform became appreciable.

  • PDF

Comparative study on cracked beam with different types of cracks carrying moving mass

  • Jena, Shakti P.;Parhi, Dayal R.;Mishra, Devasis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.797-811
    • /
    • 2015
  • An analytical-computational method along with finite element analysis (FEA) has been employed to analyse the dynamic behaviour of deteriorated structures excited by time- varying mass. The present analysis is focused on the comparative study of a double cracked beam with inclined edge cracks and transverse open cracks subjected to traversing mass. The assumed computational method applied is the fourth order Runge-Kutta method. The analysis of the structure has been carried out at constant transit mass and speed. The response of the structure is determined at different crack depth and crack inclination angles. The influence of the parameters like crack depth and crack inclination angles are investigated on the dynamic behaviour of the structure. The results obtained from the assumed computational method are compared with those of the FEA for validation and found good agreements with FEA.

Mutual Interference of Two Surface Cracks under Hertzian Contact Loading (Hertz 접촉하중하에서의 복수표면균열의 상호간섭)

  • Kim, Sang-Woo;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3048-3057
    • /
    • 1996
  • Analysis model containing two inclined surface cracks on semi-infinite elastic body is established and analyzed on the basis of linear fracture mechanics to examine mutual interference of two surface cracks. Muskhelishvili's complex stress functions are introduced and a set of singular integral equations is obtained for a dislocation density function. The stress intensity factors at crack tip are obtained by using the Gerasoulis'method. When two surface cracks are parallel and have the same length, the values of $K_1$and $\Delta K_11$(variation of $K_11$) for crack 1 and crack 2 decrease by the mutual interference of two surface cracks as the distance between the two surface cracks shortens. The effect of mutual interference is remarkable in high friction coefficient. In case that two surface cracks are parallel, the values of $K_1$and $\Delta K_11$for crack 2 decrease as the length ratio ot crack 2 to crack 1 becomes small. As the crack inclination angle rises, the value of $K_1$ and the mutual interference of $K_1$for crack 2 increase and the value of$\Delta K_11$ for crack 1 becomes smaller than that for crack 2.

An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam (고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • 함영삼;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.