• Title/Summary/Keyword: Inclined angle

Search Result 523, Processing Time 0.024 seconds

The Kinematic Difference to the Skill Level in the Yurchenko Stretch Skill of Horse Vaulting (도마 유리첸코 동작 시 숙련도에 따른 운동학적 차이)

  • Yoon, Chang-Sun;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2006
  • This study was to investigate the kinematic analysis to score of the Yurchenko stretch skill according to phases in a horse vaulting. For this study, 8 male national gymnasts were participated in acquiring three dimensional kinematical imagining data with four Sony PD-150 video cameras After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates. The kinematic factors of the distance, velocity and angle variable were calculated for Kwon3D 3.1. The following conclusions were drawn; 1) The COG resultant velocity of the less skilled group decreased in PRF phase because the less skilled group had a larger flexion-knee angle than the skilled group in BC phase, Because the less skilled group had larger flexion-shoulder angle than the skilled group in HTO phase, At blocking movement, the body inclined a moving direction. By means of it, COG lowered 2) The skilled group had a more rapid COG's vertical velocity than the less skilled group at HTD and HTO event in HC phase, because this was performed the blocking movement with body angle and contacted on a horse vaulting small and its time short by means of contacting hands on a horse vaulting quickly. Such blocking movement made the vertical up-flight movement easy at POF phase bringing out rapid COG's vertical velocity after take off a horse vaulting.

Effect of Auditory Stimulus using White Nosie on Dynamic Balance in Patients with Chronic Stroke during Walking

  • Lim, Hee Sung;Ryu, Jiseon;Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.301-309
    • /
    • 2020
  • Objective: This study aimed to investigate the effect of white noise on dynamic balance in patients with stroke during walking. Method: Nineteen patients with chronic stroke (age: 61.2±9.8 years, height: 164.4±7.4 cm, weight: 61.1±9.4 kg, paretic side (R/L): 11/8, duration: 11.6±4.9 years) were included as study participants. Auditory stimulus used white noise, and all participants listened for 40 minutes mixing six types of natural sounds with random sounds. The dynamic balancing ability was evaluated while all participants walked before and after listening to white noise. The variables were the center of pressure (CoP), the center of mass (CoM), CoP-CoM inclined angle. Results: There is a significant increase in the antero-posterior (A-P) CoP range, A-P inclination angle, and gait speed on the paretic and non-paretic sides following white noise intervention (p<.05). Conclusion: Our findings confirmed the positive effect of using white noise as auditory stimulus through a more objective and quantitative assessment using CoP-CoM inclination angle as an evaluation indicator for assessing dynamic balance in patients with chronic stroke. The A-P and M-L inclination angle can be employed as a useful indicator for evaluating other exercise programs and intervention methods for functional enhancement of patients with chronic stroke in terms of their effects on dynamic balance and effectiveness.

Numerical Analysis for the Flow Field past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지니는 유동장에 대한 수치해석)

  • Kim, Yeon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.499-505
    • /
    • 2001
  • The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of $2{\times}10^4$. The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (${\theta}$) against the wall, the interval(L) between orifices, the relative angle of rotation(${\alpha}$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hole affected the pressure drop and the flow field a lot, But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed.

  • PDF

FLOW PATTERNS PAST TWO NEARBY SPHERES (두 개의 구를 지나는 유동 패턴)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.14-20
    • /
    • 2008
  • In this investigation, flow patterns past two identical nearby spheres at Re=300 were numerically studied. We considered all possible arrangements of the two spheres in terms of the distance between the spheres and, the angle inclined with respect to the main flow direction. It turns out that significant changes in shedding characteristics are noticed depending on how the two spheres are positioned. Collecting all the numerical results obtained, we propose a diagram for flow pattern on the distance vs. angle plane. The perfect geometrical symmetry implied in the flow configuration allows one to use that diagram to identify flow patterns past two identical spheres arbitrarily positioned in physical space with respect to the main flow direction.

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode (단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성)

  • 권종완;양현태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF

Binary Nature Revealed in Circumstellar Spiral-Shell Patterns

  • Kim, Hyosun;Hsieh, I-Ta;Liu, Sheng-Yuan;Taam, Ronald E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2014
  • With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.

  • PDF

Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer (튜브 경사각이 포화풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.327-334
    • /
    • 2008
  • Effects of tube inclination on pool boiling heat transfer have been studied for the saturated water at atmospheric pressure. For the analysis, seven inclination angles varying from the horizontal to the vertical and two tube diameters(25.4 and 30.0 mm) are tested. According to the results, inclination angles result in much change on heat transfer. For the same wall superheat(about $5.3^{\circ}C$) the ratio between two heat fluxes for the $45^{\circ}$ inclined and the vertical has the value of more than five when the tube diameter is 25.4mm. As the inclination angle is increasing from the horizontal to the vertical direction heat transfer is gradually increasing because of the increase in liquid agitation. However the detailed tendency depends on the ratio between the tube length and the diameter.