• Title/Summary/Keyword: Inclined Injector

Search Result 9, Processing Time 0.023 seconds

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 1: OH-PLIF Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 1 : OH-PLIF 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated from the cavity and reflects off the top and bottom wall. For non-reacting flow, fuel makes the shear layer thicker above the cavity therefore, the shock is generated just before the trailing edge. This research has self-ignition in the combustor. For reacting flow, as the equivalence ratio increases, flame starts to generate near the injector or occur in the recirculation zone before the injector. High fuel injection sustains the jet shape in the cross flow and air can mix with fuel along the shear layer. Therefore, two flame layers find above the cavity for high equivalence ratio.

  • PDF

Numerical study on the characteristics of the flow through injector orifice by multi-block computations (다중블럭계산에 의한 분사기 오리피스 유동특성 해석)

  • Kim, Yeong-Mok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.414-426
    • /
    • 1997
  • Numerical computations were conducted to characterize the three-dimensional laminar flow through an injector orifice having an inclined angle of 30 .deg.. For this study, the incompressible Navier-Stokes equations in generalized curvilinear coordinates, using a pseudocompressibility approach for continuity equation, were solved. The computations were performed using the finite difference implicit, approximately factored scheme of Beam and Warming and multi-block grids of complete continuity at block interfaces. The multi-block computations were validated for the steady state using direct comparison of multi-block solutions with equivalent single-block ones, including 2-D 180.deg. TAD and 3-D 90.deg. pipe bend. The comparisons between the numerical solutions and the flow field measurements for a tube with sudden contraction were presented in this work for solution validation. Computational results showed the nature of complex flow fields within the inclined injector orifice, including strong pressure-driven secondary flows in the cross stream induced by the effect of streamline curvature. In addition, asymmetric secondary flows were induced in the Reynolds number range above assumed laminar flow regime considered. However, turbulence calculations and grid dependency studies are needed for more accurate computations.

Combustion Characteristics Based on Injector Shape of Supersonic Combustor (초음속 연소기의 인젝터 형상에 따른 연소특성)

  • Jin, Sangwook;Choi, Hojin;Lee, Hyung Ju;Byun, Jong-Ryul;Bae, Juhyun;Park, Dongchang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.76-87
    • /
    • 2019
  • A direct connected test was conducted for a supersonic combustor with a cavity-type flame holder. Liquid hydro-carbon fuel was injected in different types of injectors: inclined and aeroramp injectors, for the flow condition of Mach 4 at an altitude of 20 km. The static pressure on the combustor wall along the axis and the total pressure at the exit of combustor were measured to analyze the combustion characteristics at various fuel flow rates.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

A Study on Mixing Characterization of Unlike-doublet Injector for Liquid Rocket Engine (액체로켓용 Unlike-doublet 인젝터의 혼합특성 연구)

  • Lee, In-Su;Jung, Ki-Hoon;Lim, Byoung-Gjik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • The mixing of propellant and its mass distribution of unlike-doublet impinging injector, which is known to affect the combustion efficiency significantly, have been studied using PLIF(Planar Laser Induced Fluorescence). The results show that fuel jet penetrates considerably into the oxidizer jet at impinging point as variation of momentum ratio. and then stream flows inclined because of variation of momentum ratio. Consequently, the mixing efficiency shows that maximum efficiency is at MR=3. after MR=3, mining efficiency decreases slightly.

  • PDF

Numerical Analysis of Combustion Field for Different Injection Angle in End-burning Hybrid Combustor (End-burning 하이브리드 연소기 인젝터 분사각에 따른 연소 유동장의 수치적 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1108-1114
    • /
    • 2007
  • The effect of oxidizer injection angle on the combustion characteristics of end-burning hybrid combustor is numerically investigated. Besides the previously studied parameter(injector arrangement, port diameter and O/F ratio), three different injection angle are considered: parallel angle to fuel surface(Case 1), +30 degree inclined angle toward the fuel(Case 2) and 30 degree inclined angle toward the nozzle(Case 3). It is found that Case 2 has the best mixing pattern in the upstream area but has the worst combustion efficiency since non negligible amount of unburned fuel is expelled from the nozzle. In contrast, though Case 1 and Case 3 showed relatively low mixing effect than the Case 2, they had high combustion efficiency. The comparison of numerical results between Case 1 and Case 3 demonstrate that no major difference is encountered, however, Case 1 is expected to have the best combustion efficiency due to the low residence time of the Case 3 injector which heads toward the nozzle.

Visualization of Gasoline Sprays Via a Simultaneous Inaging of Fluorescence and Scattering Lights (형광, 산란광 동시 촬열법을 이용한 가솔린 분무의 거동에 관한 연구)

  • 원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.167-174
    • /
    • 1997
  • The penetration depth and the size distribution of the droplets of fuel sprays are important in the operation of spark-ignition MPI engines. A fluorescence/scattering image technique for droplet sizing was applied to measure th edroplet size distribution in non-evaporating gasoline sprays. The fluorescence and scattering lights were imaged simultaneously by the two-dimensional visualization system composed of a laser sheet, a doubling prism, optical filters, and a CCD camera. Quantitative droplet size distributions were extracted from evaluating the ratio of the two light densities. The mean droplet size measured by the fluorescence/scattering technique was compared with the result obtained by the enlarged photographs of droplets. The fluorescence/scattering image technique also gives the useful information of the characteristics of droplet impingement in a inclined wall.

  • PDF

Molten Metal Inkjet System (용융 메탈 잉크젯 시스템)

  • Lee Taik-Min;Kang Tae-Goo;Yang Jeong-Soon;Jo Jeong-Dai;Kim Kwang-Young;Kim Dong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF