• Title/Summary/Keyword: Incineration

Search Result 577, Processing Time 0.028 seconds

Mechanical Pretreatment of Municipal Waste Incineration Ash for Recovering Heavy Metals by the Horizontal Gyration Method

  • Park, Joonchul;Kaoru Masuda;Yamaguchi Hiroshi;Shigehisa Endoh
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.664-667
    • /
    • 2001
  • Segregation of binary particle systems in a horizontally gyrated bed has been experimentally studied to recover the heavy metals from municipal waste incineration (MWI) ash. Differences in density and size had less effect on segregation. Effective segregation took place under the centrifugal effect of 1 or less for any particle size ratio. Zn, Cu and Pb were concentrated in the upper side of bed by the horizontal vibration. However, there was less change in concentration for other metals such as Mg, Al and Fe etc. The separation system with the horizontal gyrating separator proved to be an effective method for the pretreatment of recovering Zn, Cu and Pb from incineration residues.

  • PDF

A Study on Characteristics of Water Quality in Wastewater according to the Washing of Municipal Solid Waste Incinerator (MSWI) Ash

  • Byun, Mi-Young;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • In order to recycle the incineration ash (bottom ash and fly ash) generated from the incineration of municipal waste for a cement material, salts as well as heavy metal should be removed by the stabilization treatment. Most of these heavy metal and over 80% of salts are removed by a washing as a pre-treatment. However, wastewater which is another pollutant is generated by a washing, then proper treatment should be developed. First the characteristics of incineration ashes collected from two domestic full-sized incinerators were investigated and removal rate of salts and heavy metals from them also studied. The wastewater quality was compared to the criteria of the regulation by analyzing the characteristics of generated wastewater during the washing of incineration ash as a condition of liquid/solid ratio. Also, we tried to used this experimental results for the basic data to develop proper processing technique of municipal waste.

  • PDF

Removal of Cl from the Incineration Ash of Domestic Municipal Solid Waste

  • Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.628-632
    • /
    • 2001
  • The removal rate of Cl from municipal solid waste incineration(MSWI) ash(bottom ash and fly ash) by washing was investigated. The Cl contents in the bottom ash and fly ash were 2.6-3.0% and 25-30% respectively, and KCl, NaCl, CaCIOH and friedel's salt were main components. From the results on the effects of washing time and temperature, the Cl contents in the bottom ash and fly ash were decreased up to 0.3% and 2.0% respectively by using of water as a solvent within 30 min at 2$0^{\circ}C$, 300 rpm of agitation speed and 10 of liquid/solid ratio. It is expected that the removal of Cl from the incineration ash by washing could make use of the ash for a cement raw material and so on.

  • PDF

Risk Assessment and Air Pollution by the Open Burning of Agricultural Waste and Residues (농업폐기물 소각에 따른 대기오염 실태 및 위해성 평가)

  • Kim, Moon-Hyeon;Yang, Won-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.30-35
    • /
    • 2007
  • Waste policies with waste metering system and recycling in 1995 have contributed to the reduction of solid waste generation. Now rural areas as well as urban areas produce less amount of solid wastes in terms of per capita. However most policies in relation to waste issue have been concentrated in urban areas. Large portion of agricultural waste in rural region are being illegally treated such as open incineration or burned out on the road. In this study, we assessed the atmospheric air quality and health risk by illegal open incineration in rural region. In case of benzene level, worst concentration during illegal open incineration was 0.23 ppm and cancer risk by exposure was estimated to $2.29{\times}10^{-3}$.

On the Alternative Incineration Technologies for the Treatment of Hazardous Waste (유해폐기물 처리용 소각 대체기술 동향)

  • Yang, Hee-Chul;Cho, Yung-Zun;Eun, Hee-Chul;Kim, Eung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.319-327
    • /
    • 2007
  • Incineration has been regarded as the best developed technology available for organically hazardous waste. However, permitting and siting incinerators to treat hazardous waste such as a waste containing PCBs is very difficult due to the public concerns associated with toxic air emissions. Recently, a lot of alternatives to an incineration have been developed and these technologies have the potential of alleviating public concerns by decreasing emissions of hazardous materials such as dioxins and furans. This paper reviews currently available alternative incineration technologies for various hazardous waste streams. Various categories of non-thermal and thermal alternative incineration technologies have been evaluated in terms of their process operating condition, applicability of a waste stream and their emission of secondary waste. Detailed descriptions of operating principles of several technologies are also provided.

The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading (하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.583-589
    • /
    • 2012
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (Municipal Solid Waste) and SS (Sewage Sludge) through the change of heat and atmospheric pollutants. In this study, LHV (Low Heating Value) is 100~300 kcal/kg because the MC (Moisture Content) of de-hydrated sewage sludge is approximately 80%. From the results, we knew the feasibility of co-incineration for MSW (80%) and SS (20%). As the co-incineration rate of SS up to 20% became higher, the loading of heat and atmospheric pollutants was not influenced.

Health Risk Related to Waste Incineration (폐기물 소각시설에 의한 주민 건강 영향)

  • Choi, Young-Sook;Ochirpurev, Bolormaa;Chae, Hee-Yun;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.20-35
    • /
    • 2021
  • Objectives: Waste treatment by incineration is gradually increasing as the emission of harmful substances has decreased owing to developments in incineration technology. However, residents living near incinerators continue to express anxiety regarding the effects on their health. Therefore, we attempted to summarize the health impact of incinerators by comprehensively reviewing the recently reported literature. Methods: Sixty-two epidemiological research papers related to incineration and health effects were selected from the Google Scholar database and analyzed (from between January 2001 and December 2019). Results: When compared to older incinerators, newer incinerators established after 2000 are considered relatively safe in terms of health effects. Nevertheless, there have been some studies that have linked them to various diseases, such as malignant tumors including soft tissue cancer and non-Hodgkin's lymphoma, reproductive disorders, respiratory diseases, and more. In addition, incinerator workers and local residents are considered to be exposed to dioxins and some heavy metals from the incinerator. Since most studies included subjects exposed to older incinerators, it is difficult to apply these results to the health impact assessment of new incinerators. However, it is not appropriate to conclude that new incinerators made with state-of-the-art technology are safe, as chronic environmental diseases caused by hazardous substances tend to appear only after prolonged exposure. Conclusions: In terms of environmental health, it is necessary to continuously monitor the health effects of incinerators. Also, there is a need to develop a research methodology that can minimize various confounders in incineration-related epidemiological study.

Research on Managing Incineration Facility according to Prediction of Change in Amount of Waste (폐기물 발생량 변화 예측에 따른 소각시설 운영에 관한 연구)

  • Ha, Sang An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • In the state that re-evaluation of calculating optimum amount of incineration in the future is needed, as considering the amount of waste, increase of heat value and change in floating population in each area in city B, the purpose of this research was to predict optimum available capacity in incineration plant and to study alternatives for the amount of disposal in each incineration plant based on the available capacity that was predicted. As a result of predicting the change in population based on progress of population in city B in the past, it is expected that an overall population is decreasing, but in some areas, population is concentrated due to increased apartment complexes, showing similar figures as the present. Moreover, when predicting the amount of waste through forecasting population, it is considered that the amount of waste by decreased population is also decreasing. However, the amount of combustible component among a total amount of waste is expected to increase, so it is predicted that the amount of incineration and combustible component will be reasonable except D incineration plant, Therefore, D incinerating plant showed 72.7% of rate of utilization of incineration facility compared to 59.1% of national rate. However, if shortfall of waste in the future can be used wisely in other areas, the use of renewable energy using burner useless heat can be maximized.

The analysis and leaching characteristics of organic compounds in incineration residues from municipal solid waste incinerators (생활폐기물 소각시설 소각재에서의 유기오염물질 정성분석 및 용출특성)

  • Hong, Suk-Young;Kim, Sam-Cwan;Yoon, Young-Soo;Park, Sun-Ku;Kim, Kum-Hee;Hwang, Seung-Ryul
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.86-95
    • /
    • 2006
  • This study was carried out to estimate leaching characteristics of incineration residues from municipal solid waste incinerators, and determine organic compounds in raw ash, leaching water and leaching residue. A total of 44 organic compounds, which were analyzed by GC/MSD and identified by wiley library search, were contained in bottom ashes. A total of 17 organic compounds were contained in fly ashes. Bottom ash and fly ash were found to contain a wide range of organic compounds such as aliphatic compounds and aromatic compounds. Organic compounds such as Ethenylbenzene, Benzaldehyde, 1-Phenyl-Ethanone and 1,4-Benzenedicarboxylic acid dimethyl ester were detected in raw ash, leaching water and residues (from bottom ash). Organic compounds such as Naphthalene, Dodecane, 1,2,3,5-Tetrachlorobenzene, Tetradecane, Hexadecane and Pentachlorobenzene were detected in raw ash, leaching water and residues (from fly ash). Through the leaching characteristics of incineration residue, it was represented that the open dumping of incineration residue can contaminate the soil and undergroundwater. In order to prevent environmental contamination that derived from extremely toxic substances in the incineration residues, it is particularly important that the incineration residues should be treated before disposal the incineration residues. Further study and proper management about leaching characteristics of organic compounds might be required.

Combustion Control of Refuse Incineration Plant using Fuzzy Model and Genetic Algorithms (퍼지 모델과 유전 알고리즘을 이용한 쓰레기 소각로의 연소 제어)

  • Park, Jong-Jin;Choi, Kyu-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2116-2124
    • /
    • 2000
  • In this paper we propose combustion control of refuse incineration plant using fuzzy model and genetic algorithm. At first fuzzy modelling is performed to obtain fuzzy model of the refuse incineration plant and obtained fuzzy model predicts outputs of the plant when inputs are given. Fuzzy model ca be used to obtain control strategy, and train and enhance operators' skill by simulating the plant. Then genetic algorithms search and find out optimal control inputs over all possible solutions in respect to desired outputs and these are inserted to plant. In order to testify proposed control method, computer simulation was carried out. As a result, ISE of fuzzy model of refuse incineration plant is 0.015 and ITAE of control by proposed method, 352 which is better than that by manual operation.

  • PDF