• Title/Summary/Keyword: Incineration

Search Result 577, Processing Time 0.024 seconds

A Study on the Odor and Ventilation in Sludge Incineration Facilities (슬러지 소각시설 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Sludge incineration facilities are socially recognized as a hate facility. Therefore, a careful deodorization plan must be established. Therefore, the incineration facility must conduct research on odor ventilation. In this study, a odor diffusion simulation in an incineration facility was conducted and analyzed. In particular, research was carried out on carry-in rooms, pre-treatment rooms, and storage facilities for crops, which are expected to rapidly spread odor. As a result, ammonia 1.62, hydrogen sulfide 0.63, and acetaldehyde 0.73 were found in the transfer room. In addition, pretreatment rooms and stencil storage facilities were found to be lower than regulatory standards.

Comparison of the Incineration Processes of Domestic Wastes Based on Life Cycle Assessment (생활폐기물(生活廢棄物) 소각(燒却) 처리공정(處理工程)의 전과정(全科程) 평가(平價)에 의한 비교(比較))

  • Jung, Woo-Jung;Lee, Sang-Don;Kim, Dong-Su
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.443-453
    • /
    • 2005
  • For the purpose of the comparative environmental estimation of the incineration processes for domestic wastes, environmental impacts for several incineration processes for one ton of domestic wastes have been estimated by employing life cycle assessment as the environmental impact assessment method. The scheme of minimum production of environmental pollutants has been considered for three different incineration processes. The evaluation for latent influence on environment was carried out by using CML(Center of Environmental Science) method which was developed by University of Leyden in Netherlands based on the equivalency factor suggested by Korea Accreditation Board. The result of life cycle assessment has showed that the total cost analysis according to the amount of incinerating waste was dependent on the operating conditions of incineration process. In addition, the annual running cost for the incineration of one ton of wastes was estimated to be negatively dependent on the amount of wastes. The degree of environmental pollution was mainly due to the kinds of the wastes rather than by the amount of wastes.

Volume Reduction Ratio and Decontamination Factor of the Bench Scale Radwaste Incineration Process (실험용 방사성 폐기물 소각로의 감용비와 제염계수)

  • Seo, Yong-Chil;Yang, Hee-Chul;Kim, Joon-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.321-331
    • /
    • 1989
  • A bench scale incineration process for the burnable radwaste has been constructed and operated at KAERI as a self-surpported development of incineration technology. The purposes of operating the process are to get experience in incineration, to analyze the characteristics of combustion and to test the performance of off-gas treatment units. Simulated paper and polyethylene wastes were incinerated. Volume reduction ratio and decontamination factor of the process have been determined to observe the economical efficiency and operational capability of the process. A methodology to estimate the acceptance limit of specific activity to an incineration facility by using a decontamination factor and to calculate the volume reduction ratio of the facility is introduced. The acceptance criteria for different radionuclides in the combustible waste at the bench scale incineration process are suggested using this methodology.

  • PDF

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

An Analysis on the Properties of Cement Mortar using Sewage Sludge Incineration Ash (하수슬러지 소각재를 이용한 시멘트 모르타르의 특성분석)

  • Ryu, Heon-Ki;Park, Jeong-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This is an experimental research in order to judge the applicability of sewage sludge incineration ash having applied the mixing proportion needed to manufacture bricks and to do plaster work with addition of hwangtoh and slaked lime as a part of the methods for utilizing the wastes produced from sewage sludge incineration ash. Based on the results from experiment and analysis, it is judged that, in case of mixing proportion of 1:2 for the purpose of plastering and masonry work, the cement mortar produced by using a 10% addition ratio of sewage sludge incineration ash with mixture of hwangtoh covering all range of addition ratio, and also the cement mortar produced by using a 20% of sewage sludge incineration ash together with 0% and 10% addition ratio of hwangtoh, was possible to be applied to the practical use. In case of mixing proportion of 1:7 for manufacture of bricks and blocks, if such brick and block products are produced with 10% and 20% addition ratio of sewage sludge incineration ash having added aggregate fines or stone dust that has been actually used in brick and block manufacturing, it is judged that these bricks and blocks could be practically used in the job sites, although strength development is a little bit lower.

  • PDF

Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis (회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구)

  • Yoon, Jungmin;Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.3-12
    • /
    • 2014
  • This study aims at providing an economic assessment for incineration plants which recover heat during its incineration process. In this study, Life Cycle Cost(LCC) of incineration plants is performed based on each regression analysis formula for construction cost, operation cost, and heat generation in order to compare economic feasibility. The result shows that the incineration plant recovering waste heat while processing 80 tons of waste per day increases both initial investment and operation cost but this type of an incineration plant has economical predominance from the recovered waste heat over the one that does not recover heat when being operated for more than eleven years if the retrieved heat replaces the use of LNG. And its payback time reaches more than 19 years in case of selling heat and performing emission trading.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Safety Assessment on the Incineration Disposal of Regulation Exempt Waste by RESRAD Code (RESRAD 코드를 활용한 규제해제 폐기물 소각처분에 대한 안정성 평가)

  • Kim, Hui-Gyeong;Han, Sang-Wook;Park, Su-Ri;Kim, Byung-Jick
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • In this paper, risk assessment was conducted to verify self - disposal requirements by landfill for exempted incineration ash by using Resrad Ver.6.5 computer code. The result of risk assessment by landfill for the incineration by-product is that individual dose is $6.91{\times}10^{-2}{\mu}Sv\;y-1$ and collective dose is $3.475{\times}10^{-7}man-Sv\;y-1$. It proved that the result meets reference dose of individual dose $10{\mu}Sv\;y-1$ and collective dose 1 man-Sv y-1 for general public. According to the current 'Nuclear Safety Commission Notice [No. 2014-3]', it states that the exempted wastes can be disposed of by incineration, landfill and recycling. However, most of recently documents and papers related to exempted wastes are disposed of by landfill and recyling and it could not confirm the case of exempt by incineration. If the national consensus is derived and treating the waste by using process of incineration is activated, it could be considered to treat low level of radiation wastewater and activated carbon excluded from exempted waste because of nuclide $^3H$ and $^{14}C$.

Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

  • Kim, Tae-Han;Choi, Boo-Hun;Kook, Joongjin
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.585-593
    • /
    • 2021
  • Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body. Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens. Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O. Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.