• 제목/요약/키워드: Inception V2

Search Result 60, Processing Time 0.026 seconds

Study the mutual robustness between parameter and accuracy in CNNs and developed an Automated Parameter Bit Operation Framework (CNN 의 파라미터와 정확도간 상호 강인성 연구 및 파라미터 비트 연산 자동화 프레임워크 개발)

  • Dong-In Lee;Jung-Heon Kim;Seung-Ho Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.451-452
    • /
    • 2023
  • 최근 CNN 이 다양한 산업에 확산되고 있으며, IoT 기기 및 엣지 컴퓨팅에 적합한 경량 모델에 대한 연구가 급증하고 있다. 본 논문에서는 CNN 모델의 파라미터 비트 연산을 위한 자동화 프레임워크를 제안하고, 파라미터 비트와 모델 정확도 사이의 관계를 실험 및 연구한다. 제안된 프레임워크는 하위 n- bit 를 0 으로 설정하여 정보 손실 발생시킴으로써 ImageNet 데이터셋으로 사전 학습된 CNN 모델의 파라미터와 정확도의 강인성을 비트 단위로 체계적으로 실험할 수 있다. 우리는 비트 연산을 수행한 파라미터로 InceptionV3, InceptionResnetV2, ResNet50, Xception, DenseNet121, MobileNetV1, MobileNetV2 모델의 정확도를 평가한다. 실험 결과는 성능이 낮은 모델일수록 파라미터와 정확도 간의 강인성이 높아 성능이 좋은 모델보다 정확도를 유지하는 비트 수가 적다는 것을 보여준다.

Application of Deep Learning-Based Nuclear Medicine Lung Study Classification Model (딥러닝 기반의 핵의학 폐검사 분류 모델 적용)

  • Jeong, Eui-Hwan;Oh, Joo-Young;Lee, Ju-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.

Comparison of Fine-Tuned Convolutional Neural Networks for Clipart Style Classification

  • Lee, Seungbin;Kim, Hyungon;Seok, Hyekyoung;Nang, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Clipart is artificial visual contents that are created using various tools such as Illustrator to highlight some information. Here, the style of the clipart plays a critical role in determining how it looks. However, previous studies on clipart are focused only on the object recognition [16], segmentation, and retrieval of clipart images using hand-craft image features. Recently, some clipart classification researches based on the style similarity using CNN have been proposed, however, they have used different CNN-models and experimented with different benchmark dataset so that it is very hard to compare their performances. This paper presents an experimental analysis of the clipart classification based on the style similarity with two well-known CNN-models (Inception Resnet V2 [13] and VGG-16 [14] and transfers learning with the same benchmark dataset (Microsoft Style Dataset 3.6K). From this experiment, we find out that the accuracy of Inception Resnet V2 is better than VGG for clipart style classification because of its deep nature and convolution map with various sizes in parallel. We also find out that the end-to-end training can improve the accuracy more than 20% in both CNN models.

Automatic Pancreas Detection on Abdominal CT Images using Intensity Normalization and Faster R-CNN (복부 CT 영상에서 밝기값 정규화 및 Faster R-CNN을 이용한 자동 췌장 검출)

  • Choi, Si-Eun;Lee, Seong-Eun;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.396-405
    • /
    • 2021
  • In surgery to remove pancreatic cancer, it is important to figure out the shape of a patient's pancreas. However, previous studies have a limit to detect a pancreas automatically in abdominal CT images, because the pancreas varies in shape, size and location by patient. Therefore, in this paper, we propose a method of learning various shapes of pancreas according to the patients and adjacent slices using Faster R-CNN based on Inception V2, and automatically detecting the pancreas from abdominal CT images. Model training and testing were performed using the NIH Pancreas-CT Dataset, and intensity normalization was applied to all data to improve pancreatic detection accuracy. Additionally, according to the shape of the pancreas, the test dataset was classified into top, middle, and bottom slices to evaluate the model's performance on each data. The results show that the top data's mAP@.50IoU achieved 91.7% and the bottom data's mAP@.50IoU achieved 95.4%, and the highest performance was the middle data's mAP@.50IoU, 98.5%. Thus, we have confirmed that the model can accurately detect the pancreas in CT images.

A Study on Facial Skin Disease Recognition Using Multi-Label Classification (다중 레이블 분류를 활용한 안면 피부 질환 인식에 관한 연구)

  • Lim, Chae Hyun;Son, Min Ji;Kim, Myung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.555-560
    • /
    • 2021
  • Recently, as people's interest in facial skin beauty has increased, research on skin disease recognition for facial skin beauty is being conducted by using deep learning. These studies recognized a variety of skin diseases, including acne. Existing studies can recognize only the single skin diseases, but skin diseases that occur on the face can enact in a more diverse and complex manner. Therefore, in this paper, complex skin diseases such as acne, blackheads, freckles, age spots, normal skin, and whiteheads are identified using the Inception-ResNet V2 deep learning mode with multi-label classification. The accuracy was 98.8%, hamming loss was 0.003, and precision, recall, F1-Score achieved 96.6% or more for each single class.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Evaluation on Insulation Performance of Traction Motors for a Hybrid Vehicle by Partial Discharge Measurement (부분방전 측정에 의한 하이브리드차량 견인전동기의 절연성능평가)

  • Park, Dae-Won;Park, Chan-Yong;Choi, Jae-Sung;Kil, Gyung-Suk;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.249-253
    • /
    • 2009
  • This paper dealt with the insulation evaluation by a measurement of partial discharge(PD) on traction motors used in a hybrid vehicle. The PD method has been accepted as an effective and a non-destructive. technique to evaluate insulation performance of low-voltage electric and electronic devices. In this paper, the PD measurement system which was manufactured with a coupling network, a low noise amplifier, and an associated electronics is described. The PD measurement system has the frequency bandwidth of $1[MHz]{\sim}30[MHz]$ at -3 [dB] and the stable sensitivity of 19 [mV/pC] for the traction motor. From the experimental results, discharge inception voltage (DIV) and apparent charge (q) were $1,100[V_{rms}]$ and 105 [pC] for the used motor, and $1,400[V_{rms}]$ and 84 [pC] for the new one. By comparing the DIV and q, we could evaluate the insulation condition for the traction motors.

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

Human Activity Classification Using Deep Transfer Learning (딥 전이 학습을 이용한 인간 행동 분류)

  • Nindam, Somsawut;Manmai, Thong-oon;Sung, Thaileang;Wu, Jiahua;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.478-480
    • /
    • 2022
  • This paper studies human activity image classification using deep transfer learning techniques focused on the inception convolutional neural networks (InceptionV3) model. For this, we used UFC-101 public datasets containing a group of students' behaviors in mathematics classrooms at a school in Thailand. The video dataset contains Play Sitar, Tai Chi, Walking with Dog, and Student Study (our dataset) classes. The experiment was conducted in three phases. First, it extracts an image frame from the video, and a tag is labeled on the frame. Second, it loads the dataset into the inception V3 with transfer learning for image classification of four classes. Lastly, we evaluate the model's accuracy using precision, recall, F1-Score, and confusion matrix. The outcomes of the classifications for the public and our dataset are 1) Play Sitar (precision = 1.0, recall = 1.0, F1 = 1.0), 2), Tai Chi (precision = 1.0, recall = 1.0, F1 = 1.0), 3) Walking with Dog (precision = 1.0, recall = 1.0, F1 = 1.0), and 4) Student Study (precision = 1.0, recall = 1.0, F1 = 1.0), respectively. The results show that the overall accuracy of the classification rate is 100% which states the model is more powerful for learning UCF-101 and our dataset with higher accuracy.

A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm (딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축)

  • Na, Myung Hwan;Cho, Wanhyun;Kim, SangKyoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.581-596
    • /
    • 2020
  • Purpose: purpose of this study was to propose the web application platform which can be to detect and discriminate various diseases and pest of tomato plant based on the large amount of disease image data observed in the facility or the open field. Methods: The deep learning algorithms uesed at the web applivation platform are consisted as the combining form of Faster R-CNN with the pre-trained convolution neural network (CNN) models such as SSD_mobilenet v1, Inception v2, Resnet50 and Resnet101 models. To evaluate the superiority of the newly proposed web application platform, we collected 850 images of four diseases such as Bacterial cankers, Late blight, Leaf miners, and Powdery mildew that occur the most frequent in tomato plants. Of these, 750 were used to learn the algorithm, and the remaining 100 images were used to evaluate the algorithm. Results: From the experiments, the deep learning algorithm combining Faster R-CNN with SSD_mobilnet v1, Inception v2, Resnet50, and Restnet101 showed detection accuracy of 31.0%, 87.7%, 84.4%, and 90.8% respectively. Finally, we constructed a web application platform that can detect and discriminate various tomato deseases using best deep learning algorithm. If farmers uploaded image captured by their digital cameras such as smart phone camera or DSLR (Digital Single Lens Reflex) camera, then they can receive an information for detection, identification and disease control about captured tomato disease through the proposed web application platform. Conclusion: Incheon Port needs to act actively paying.