• Title/Summary/Keyword: Incast Issue

Search Result 2, Processing Time 0.015 seconds

Mitigating TCP Incast Issue in Cloud Data Centres using Software-Defined Networking (SDN): A Survey

  • Shah, Zawar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5179-5202
    • /
    • 2018
  • Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data centers today. However, cloud data centers using TCP experience many issues as TCP was designed based on the assumption that it would primarily be used in Wide Area Networks (WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This issue arises because of the many-to-one communication pattern that commonly exists in the modern cloud data centers. In many-to-one communication pattern, multiple senders simultaneously send data to a single receiver. This causes packet loss at the switch buffer which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). Recently, Software-Defined Networking (SDN) has been used by many researchers to mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to the Incast issue is carried out. In this survey, various SDN based solutions are classified into four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based solutions, Quick Recovery based solutions and Application Layer based solutions. All the solutions are critically evaluated in terms of their principles, advantages, and shortcomings. Another important feature of this survey is to compare various SDN based solutions with respect to different performance metrics e.g. maximum number of concurrent senders supported, calculation of delay at the controller etc. These performance metrics are important for deployment of any SDN based solution in modern cloud data centers. In addition, future research directions are also discussed in this survey that can be explored to design and develop better SDN based solutions to the Incast issue.

FaST: Fine-grained and Scalable TCP for Cloud Data Center Networks

  • Hwang, Jaehyun;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.762-777
    • /
    • 2014
  • With the increasing usage of cloud applications such as MapReduce and social networking, the amount of data traffic in data center networks continues to grow. Moreover, these appli-cations follow the incast traffic pattern, where a large burst of traffic sent by a number of senders, accumulates simultaneously at the shallow-buffered data center switches. This causes severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. This causes cloud applications to suffer long completion times towing to the packet losses, and hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based approach is an attractive solution that conservatively adjusts to the network congestion in advance. This legacy approach, however, lacks scalability in terms of the number of flows. In this paper, we reveal the primary cause of the scalability issue through analysis, and propose a new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion window to conduct fine-grained congestion control that results in improved scalability. Fur-thermore, FaST is easy to deploy since it requires only a few software modifications at the server-side. Through ns-3 simulations, we show that FaST improves the scalability of data center networks compared with the existing approaches.