• Title/Summary/Keyword: Inbreeding Estimates

Search Result 21, Processing Time 0.027 seconds

Genetic Variation in Wild and Cultured Populations of the Sea Squirt Halocynthia roretzi Inferred from Microsatellite DNA Analysis

  • Han, Hyon-Sob;Nam, Bo-Hye;Kang, Jung-Ha;Kim, Yi-Kyoung;Jee, Young-Ju;Hur, Young-Baek;Yoon, Moon-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.151-155
    • /
    • 2012
  • We used nine microsatellite DNA markers to estimate genetic variation among wild and cultured populations of the sea squirt Halocynthia roretzi. The loci were polymorphic, with 6-32 alleles, and allelic richness ranged from 6.0 to 26.1 in each population. The wild and the cultured populations had similar mean heterozygosities ($H_O$ and $H_E$), allele numbers, and allelic richness. One cultured population with softness syndrome had a lower mean in the observed heterozygosity ($H_O$ = 0.57) and higher mean inbreeding coefficient ($F_{IS}$ = 0.261) than any other populations. This suggests that the loss of genetic variation in the diseased population might be due to increased inbreeding. A neighbor-joining tree and pairwise population estimates of $F_{ST}$ showed moderate genetic differentiation between the wild and the cultured populations. Additionally, the softness syndrome population was genetically divergent from wild populations, but it was genetically close to the cultured populations.

Time Trends in Estimates of Genetic Parameters in a Population of Layer Breeders (난용종계 집단에서의 선발에 의한 유전모수 변화 양상)

  • 최연호;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.17 no.4
    • /
    • pp.255-268
    • /
    • 1990
  • This study was carried out to investigate the time-trends of genetic parameters of the dosed flock population which selected for improving egg production. Data for two layer pure lines, Line-W (Single Comb White Leghorn) and Line-B (brown layer) which have been maintained at the Mani Breeding Farm were collected from 1980 to 1985 during 5 generations. The effective number of parents per generation ranged from 148 to 366 in Line-W and 85 to 355 in Line-B, and the cumulative expected inbreeding coefficients during 5 generations of selection were 15% and 1.6%. So inbreeding could not be considered a critical factor on estimating the genetic parameters, heritabilities and genetic correlations Heritabilities of EN 300 and EN 400, primary two selected traits were significantly decreased during 5 generations but the estimates of the other 03its not showed the consistent decreasing pattern significantly. No time trends of probable consequence were evident in the genetic correlation coefficients of the traits studied. The reason for that situation was attributed to the fact that selection was conducted for multiple objectives and the relative importance of selection for the studied traits were not consistent by generations.

  • PDF

Comparison of Mating Systems in Populations of Gleditsia japonica var. koraiensis

  • Huh, Man-Kyu
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.411-414
    • /
    • 2006
  • The mating systems of two groups of natural populations of Gleditsia japonica var. koraiensis in Korea were determined using allozyme analysis. The result suggests that G. japonica var. koraiensis is predominantly outcrossing. The tm values of eight populations in Korea varied from 0.667 (Mdh-1) to 0.938 (ldh-1), giving an average 0.820. Population and individual outcrossing estimates were associated with flowering tree density or degree of spatial isolation. The reason for relatively low outcrossing rates of some populations could be attributed to reduction of effective population sizes of sib for the medicine, small population size, and isolation of flowering mature trees. The heterozygote excesses were observed in some natural populations, whereas other populations exhibited varying degrees of inbreeding and heterozygotes deficit. Thus, selection against homozygotes operated in the progeny populations throughout the life cycle.

Variance component analysis of growth and production traits in Vanaraja male line chickens using animal model

  • Ullengala, Rajkumar;Prince, L. Leslie Leo;Paswan, Chandan;Haunshi, Santosh;Chatterjee, Rudranath
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.471-481
    • /
    • 2021
  • Objective: A comprehensive study was conducted to study the effects of partition of variance on accuracy of genetic parameters and genetic trends of economic traits in Vanaraja male line/project directorate-1 (PD-1) chicken. Methods: Variance component analysis utilizing restricted maximum likelihood animal model was carried out with five generations data to delineate the population status, direct additive, maternal genetic, permanent environmental effects, besides genetic trends and performance of economic traits in PD-1 chickens. Genetic trend was estimated by regression of the estimated average breeding values (BV) on generations. Results: The body weight (BW) and shank length (SL) varied significantly (p≤0.01) among the generations, hatches and sexes. The least squares mean of SL at six weeks, the primary trait was 77.44±0.05 mm. All the production traits, viz., BWs, age at sexual maturity, egg production (EP) and egg weight were significantly influenced by generation. Model four with additive, maternal permanent environmental and residual effects was the best model for juvenile growth traits, except for zero-day BW. The heritability estimates for BW and SL at six weeks (SL6) were 0.20±0.03 and 0.17±0.03, respectively. The BV of SL6 in the population increased linearly from 0.03 to 3.62 mm due to selection. Genetic trend was significant (p≤0.05) for SL6, BW6, and production traits. The average genetic gain of EP40 for each generation was significant (p≤0.05) with an average increase of 0.38 eggs per generation. The average inbreeding coefficient was 0.02 in PD-1 line. Conclusion: The population was in ideal condition with negligible inbreeding and the selection was quite effective with significant genetic gains in each generation for primary trait of selection. The animal model minimized the over-estimation of genetic parameters and improved the accuracy of the BV, thus enabling the breeder to select the suitable breeding strategy for genetic improvement.

Two-Year Estimates of Mating System in Seed Orchard of Pinus densiflora Revealed by cpSSR and nSSR Markers (안면도 소나무 채종원 교배양식 추정모수의 연간비교)

  • Kim, Young Mi;Hong, Yong Pyo;Park, Jae In
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.578-587
    • /
    • 2015
  • Nuclear SSR (nSSR) and chloroplast SSR (cpSSR) markers were analyzed to assess the parameters of mating system in seed orchard, such as outcrossing rates, the number of potential pollen contributors, paternal contribution rates, degree of pollen contamination, and biparental inbreeding ($t_m-t_s$). In 2006, 2007, seeds were collected from the seed orchard of Pinus densiflora, established in 1977 at Anmyeon island. Estimates of outcrossing rates ranged from 94.9 to 100% (mean 98.9%) in 2006 and from 91.2 to 100% (mean 97.7%) in 2007 on the basis of the analysis of cpSSR haplotypes and from 90.3 to 100% (mean 95.9%) in 2006 and from 81.6 to 100% (mean 95.3%) in 2007 on the basis of the analysis of nSSR genotypes. By cross checking of both DNA markers, mean cumulative outcrossing rates of 100% and 98.9% were estimated in each year. Mean contamination rates were estimated as 48.9% and 42.4%, respectively. On the basis of cpSSR haplotype observed in each seed, paternal contribution rates (the number of pollen contributors) were estimated as 0.458 (mean 16.2) in 2006 and 0.512 (mean 14.8) in 2007. In conclusion, considering pretty high level of outcrossing rates observed in a seed orchard, there might be little to be influenced by inbreeding depression for genetic potential of the seeds induced by selfing. Estimates of the mating system parameters obtained from the two reproductive years were not statistically different, which revealed stable genetic quality of seeds produced in different years. Observed results from this study may provide useful information for the management and establishment of the seed orchard of the progressive generation.

Estimation of Genetic Parameters for Carcass Traits in Hanwoo Steer (거세한우의 도체형질에 대한 유전모수 추정)

  • Yoon, H.B.;Kim, S.D.;Na, S.H.;Chang, U.M.;Lee, H.K.;Jeon, G.J.;Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.383-390
    • /
    • 2002
  • The data were consisted of 1,262 records for carcass traits observed at Hanwoo steers from 1998 to 2001 at Namwon and Deakwanryung branch of National Livestock Research Institute, Rural Development Administration. Pedigrees of young bulls were traced back to search for magnifying inbreeding. Genetic parameters for carcass traits with Gibbs sampling in a threshold animal model were compared to estimates with REML algorithm in linear model. As the results, most of bulls were not inbred and sire pedigree group was non-inbred population. However, most of the bulls fell in some relationship with each other. Heritability estimates as fully posterior means by Gibbs samplers in threshold model were higher than those by REML in linear model. Furthermore, these estimates in threshold model using GS showed higher estimates than estimates using tested young bulls in previous study and same model. Heritability estimate by GS for marbling score was 0.74 and genetic correlation estimate between marbling score and body weight at slaughter was –0.44. Further study for correlation of breeding values between REML algorithm in linear model and Gibbs sampling algorithm in threshold model was needed.

Population Structure and Genetic Bottleneck Analysis of Ankleshwar Poultry Breed by Microsatellite Markers

  • Pandey, A.K.;Kumar, Dinesh;Sharma, Rekha;Sharma, Uma;Vijh, R.K.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.915-921
    • /
    • 2005
  • Genetic variation at 25 microsatellite loci, population structure, and genetic bottleneck hypothesis were examined for Ankleshwar poultry population found in Gujrat, India. The estimates of genetic variability such as effective number of alleles and gene diversities revealed substantial genetic variation frequently displayed by microsatellite markers. The average polymorphism across the studied loci and the expected gene diversity in the population were 6.44 and 0.670${\pm}$0.144, respectively. The population was observed to be significantly differentiated into different groups, and showed fairly high level of inbreeding (f = 0.240${\pm}$0.052) and global heterozygote deficit. The bottleneck analysis indicated the absence of genetic bottleneck in the past. The study revealed that the Ankleshwar poultry breed needs appropriate genetic management for its conservation and improvement. The information generated in this study may further be utilized for studying differentiation and relationships among different Indian poultry breeds.

Genetic diversity of wild and farmed black sea bream populations in Jeju

  • An, Hye-Suck;Hong, Seong-Wan;Lee, Jung-Uie;Park, Jung-Youn;Kim, Kyung-Kil
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2010
  • Black sea bream, Acanthopagrus schlegelii, is a commercially important fish in Korea. As a preliminary investigation into the effect of hatchery rearing for stock enhancement, we examined genetic diversity between wild and farmed black sea bream populations from Jeju using six microsatellite markers. High levels of polymorphism were observed between the two populations. A total of 87 different alleles were found at the loci, with some alleles being unique. Allelic variability ranged from 8 to 22 in the wild population and from 7 to 17 in the farmed one. Average observed and expected heterozygosities were estimated at 0.87 and 0.88 in the wild sample. The corresponding estimates were 0.83 and 0.86 in the farmed sample. Although a considerable loss of rare alleles was observed in the farmed sample, no statistically significant reductions were found in heterozygosity or allelic diversity in the farmed sample, compared with the wild one. Significant genetic heterogeneity was found between the wild and farmed populations. These results suggest that more intensive breeding practices for stock enhancement may have resulted in a further decrease of genetic diversity. Thus, it is necessary to monitor genetic variation in bloodstock, progeny, and target populations and control inbreeding in a commercial breeding program for conservation. This information may be useful for fisheries management and the aquaculture industry.

Genetic Structure of and Evidence for Admixture between Western and Korean Native Pig Breeds Revealed by Single Nucleotide Polymorphisms

  • Edea, Zewdu;Kim, Sang-Wook;Lee, Kyung-Tai;Kim, Tae Hun;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1263-1269
    • /
    • 2014
  • Comprehensive information on genetic diversity and introgression is desirable for the design of rational breed improvement and conservation programs. Despite the concerns regarding the genetic introgression of Western pig breeds into the gene pool of the Korean native pig (KNP), the level of this admixture has not yet been quantified. In the present study, we genotyped 93 animals, representing four Western pig breeds and KNP, using the porcine SNP 60K BeadChip to assess their genetic diversity and to estimate the level of admixture among the breeds. Expected heterozygosity was the lowest in Berkshire (0.31) and highest in Landrace (0.42). Population differentiation ($F_{ST}$) estimates were significantly different (p<0.000), accounting for 27% of the variability among the breeds. The evidence of inbreeding observed in KNP (0.029) and Yorkshire (0.031) may result in deficient heterozygosity. Principal components one (PC1) and two (PC2) explained approximately 35.06% and 25.20% of the variation, respectively, and placed KNP somewhat proximal to the Western pig breeds (Berkshire and Landrace). When K = 2, KNP shared a substantial proportion of ancestry with Western breeds. Similarly, when K = 3, over 86% of the KNP individuals were in the same cluster with Berkshire and Landrace. The linkage disquilbrium (LD) values at $r^2_{0.3}$, the physical distance at which LD decays below a threshold of 0.3, ranged from 72.40 kb in Landrace to 85.86 kb in Yorkshire. Based on our structure analysis, a substantial level of admixture between Western and Korean native pig breeds was observed.

Genetic diversity analysis of Thai indigenous pig population using microsatellite markers

  • Charoensook, Rangsun;Gatphayak, Kesinee;Brenig, Bertram;Knorr, Christoph
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1491-1500
    • /
    • 2019
  • Objective: European pigs have been imported to improve the economically important traits of Thai pigs by crossbreeding and was finally completely replaced. Currently Thai indigenous pigs are particularly kept in a small population. Therefore, indigenous pigs risk losing their genetic diversity and identity. Thus, this study was conducted to perform large-scale genetic diversity and phylogenetic analyses on the many pig breeds available in Thailand. Methods: Genetic diversity and phylogenetics analyses of 222 pigs belonging to Thai native pigs (TNP), Thai wild boars (TWB), European commercial pigs, commercial crossbred pigs, and Chinese indigenous pigs were investigated by genotyping using 26 microsatellite markers. Results: The results showed that Thai pig populations had a high genetic diversity with mean total and effective ($N_e$) number of alleles of 14.59 and 3.71, respectively, and expected heterozygosity ($H_e$) across loci (0.710). The polymorphic information content per locus ranged between 0.651 and 0.914 leading to an average value above all loci of 0.789, and private alleles were found in six populations. The higher $H_e$ compared to observed heterozygosity ($H_o$) in TNP, TWB, and the commercial pigs indicated some inbreeding within a population. The Nei's genetic distance, mean $F_{ST}$ estimates, neighbour-joining tree of populations and individual, as well as multidimensional analysis indicated close genetic relationship between Thai indigenous pigs and some Chinese pigs, and they are distinctly different from European pigs. Conclusion: Our study reveals a close genetic relationship between TNP and Chinese pigs. The genetic introgression from European breeds is found in some TNP populations, and signs of genetic erosion are shown. Private alleles found in this study should be taken into consideration for the breeding program. The genetic information from this study will be a benefit for both conservation and utilization of Thai pig genetic resources.