• Title/Summary/Keyword: Inborn error metabolic disorder

Search Result 7, Processing Time 0.019 seconds

Preimplantation Genetic Diagnosis in Inborn Error Metabolic Disorders (유전성 대사질환의 착상전 유전진단)

  • Kang, Inn Soo
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.94-107
    • /
    • 2005
  • Prenatal diagnosis (PND) such as amniocentesis or chorionic villi sampling has been widely used in order to prevent the birth of babies with defects especially in families with single gene disorderor chromosomal abnormalities. Preimplantation genetic diagnosis (PGD) has already become an alternative to traditional PND. Indications for PGD have expanded beyond those practices in PND (chromosomal abnormalities, single gene defects), such as late-onset diseases with genetic predisposition, and HLA typing for stem cell transplantation to affected sibling. After in vitro fertilization, the biopsied blastomere from the embryo is analyzed for single gene defect or chromosomal abnormality. The unaffected embryos are selected for transfer to the uterine cavity. Therefore, PGD has an advantage over PND as it can avoid the risk of pregnancy termination. In this review, PGD will be introduced and application of PGD in inborn error metabolic disorder will be discussed.

  • PDF

The Narrative Review of Galactosemia Including a New Subtype (새로운 유형을 포함한 갈락토스혈증의 이해)

  • Ga Young Park;Yong Hee Hong
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.15-20
    • /
    • 2023
  • Galactosemia is an inborn error disorder of carbohydrate metabolism, caused by metabolic disturbances at various stages of the Leloir pathway. In patients with galactosemia, accurate diagnosis and appropriate care are essential to avoid complications and unnecessary treatments. And a careful differential diagnosis of the type of galactosemia is crucial. Even with an appropriate galactose-restricted diet, long-term complications may occur, especially in patients with classic galactosemia. So new treatment options are being developed. In this review, we will review the new symptoms of each subtype that have been reported recently and GALM (Galactose mutarotase) deficiency, a new form of galactosemia, and treatment policies according to recent guidelines.

  • PDF

Status of High Risk Group Fabry Disease Screening in Korea by Measuring Globotriacocylceramide in Body Fluid using Electrospray-MS/MS (탠덤매스에의한 체액 중 Globotriaocylceramide(Gb-3)의 측정을 이용한 한국인 고 위험도군에서의 파브리병 스크리닝)

  • Yoon, Hye-Ran
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Fabry disease (FD) is an X-linked inborn error of glycoshpingolipid metabolism resulting from mutation in the enzyme ${\alpha}$-galactosidase A gene. The disease is an X-linked lipid storage disorder and the lack of ${\alpha}$-Gal A causes an intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb-3). Measurement of Gb-3 in plasma has clinical importance for monitoring after enzyme replacement therapy for confirmed FD patients. Using electrospray ionization MS/MS we had developed, a simple, rapid, and highly sensitive analytical method for Gb-3 in plasma was used for the purpose of screening FD among high risk groups in Korean population. To date, no comprehensive results for FD screening have been performed and reported in Korea. We screened 1,100 outpatients from 13 hospitals (including clinics) to assess the incidence of FD among patients in high risk groups. For patients with borderline level amount of Gb-3, we repeated Gb-3 or performing complementary or confirmative assay with ${\alpha}$-Gal A activity and DNA mutaion analysis for confirmation diagnosis. Of 1,100 we diagnosed 3 FD with 2 classical type and 1 carrier (0.27%).

A case with 3-Methylcrotonyl-CoA carboxylase deficiency with MCCC2 mutations (MCCC2 유전자 돌연변이로 진단된 3-Methylcrotonyl-CoA carboxylase deficiency)

  • Lee, Beom-Hui;Jin, Hye-Yeong;Kim, Gu-Hwan;Choe, Jin-Ho;Yu, Han-Uk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.10 no.1
    • /
    • pp.27-30
    • /
    • 2010
  • 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD) is an autosomal-recessive inborn error of leucine catabolism caused by the deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC). With the introduction of tandem mass spectrometry in newborn screening, this disorder has been identified with unexpectedly high prevalence. The clinical manifestations of 3-MCCD are highly variable ranging from asymptomatic to severe neurological manifestations. 3-MCC is an heteromeric enzyme consisting of ${\alpha}$ - and ${\beta}$ - subunits, encoded by the MCCC1 and the MCCC2 gene, respectively. In the currentreport, a Korean patient with 3-MCCD is described. She was identified by newborn screening test, and has been asymptomatic with normal development and intelligence up to 3.8 years of age. She carries p.[D280Y]+[D280Y] mutations in the MCCC2 gene.

  • PDF

Quantitation of L-carnitine in plasma by electrospray ionization tandem mass spectrometry (ESI/MS/MS를 이용한 혈장 중 카르니틴 정량분석)

  • Kang, Seung Woo;Kim, Ho Hyun;Lee, Kyung Ryul;Yoon, Hye-Ran
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.163-167
    • /
    • 2005
  • In this study, a novel analytical method has been developed for the rapid determination of L-carnitine in human plasma using electrospray ionization tandem mass spectrometry. Free carnitine (FC) was analyzed after extraction with 80% methanol and total carnitine (TC) was analyzed after hydrolysis and extraction. Acyl carnitine (AC) was subtracted FC from TC. Analytical methods used multiple reaction monitoring (MRM) scan modes. A correlation coefficient of linear regression ($r^2$) was 0.9995, recovery was 97%, reproducibility was less than 10%, and limit of detection (LOD) was $0.0016{\mu}mol/L$. This method reduced sample preparation time and showed high resolution and good reproducibility compared to that with liquid chromatographic methods. Normal control showed AC was lower than FC. Clinical management of patients with inborn error of metabolism showed FC was lower than AC. Thus, carnitine fraction level was very important to monitoring patients with metabolic disorder.

Phenylketonuria: Current Treatments and Future Developments (페닐케톤뇨증의 치료: 현재와 미래)

  • Lee, Jeongho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2020
  • Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase (PAH) gene. If untreated or late treated, results in profound and irreversible mental disability. Newborn screening test identify patients with phenylketouria. The early initiation of a phenylalanine restricted diet very soon prevents most of the neuropsychiatric complications. However, the diet therapy is difficult to maintain and compliance is poor, especially in adolescents and adulthood. Since 2015, American Medical College of Medical Genetics and Genomics (ACMG) recommended more strong restrictive diet therapy for target blood level of phenylalanine (<360 umol/L). For over four decades the only treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy (Tetrahydrobiopterin, BH4) which is effective in up to 30% of patients. Data from controlled clinical trials with sapropterin dihydrochloride indicate a similar occurrence of all-cause adverse events with this treatment and placebo. Large neutral aminoacids (LNAA) competes with phenylalanine for transport across the blood-brain-barrier and have a beneficial effect on executive functioning. A new therapy has just been approved that can be effective in most patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. Phenylalanine ammonia lyase (PAL-PEG) was approved in the USA by FDA in May of 2018 for adult patients with uncontrolled blood phenylalanine concentrations on current treatment. Nucleic acid therapy (therapeutic mRNA or gene therapy) is likely to provide longer term solutions with few side effects.

Long-term Clinical Consequences in Patients with Urea Cycle Disorders in Korea: A Single-center Experience (요소회로대사 질환 환자들의 장기적인 임상 경과에 대한 단일 기관 경험)

  • Lee, Jun;Kim, Min-ji;Yoo, Sukdong;Yoon, Ju Young;Kim, Yoo-Mi;Cheon, Chong Kun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Purpose: Urea cycle disorder (UCD) is an inherited inborn error of metabolism, acting on each step of urea cycle that cause various phenotypes. The purpose of the study was to investigate the long-term clinical consequences in different groups of UCD to characterize it. Methods: Twenty-two patients with UCD genetically confirmed were enrolled at Pusan National University Children's hospital and reviewed clinical features, biochemical and genetic features retrospectively. Results: UCD diagnosed in the present study included ornithine transcarbamylase deficiency (OTCD) (n=10, 45.5%), argininosuccinate synthase 1 deficiency (ASSD) (n=6, 27.3%), carbamoyl-phosphate synthetase 1 deficiency (CPS1D) (n=3, 13.6%), hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHHS) (n=2, 9.1%), and arginase-1 deficiency (ARG1D) (n=1, 4.5%). The age at the diagnosis was 32.7±66.2 months old (range 0.1 to 228.0 months). Eight (36.4%) patients with UCD displayed short stature. Neurologic sequelae were observed in eleven (50%) patients with UCD. Molecular analysis identified 37 different mutation types (14 missense, 6 nonsense, 6 deletion, 6 splicing, 3 delins, 1 insertion, and 1 duplication) including 14 novel variants. Progressive growth impairment and poor neurological outcomes were associated with plasma isoleucine and leucine concentrations, respectively. Conclusion: Although combinations of treatments such as nutritional restriction of proteins and use of alternative pathways for discarding excessive nitrogen are extensively employed, the prognosis of UCD remains unsatisfactory. Prospective clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth or neurological outcomes and decrease metabolic crisis episodes in patients with UCD.