• Title/Summary/Keyword: Inaccessible Area

Search Result 53, Processing Time 0.031 seconds

Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applications to DMZ in the Western Imjin Estuary (위성영상을 이용한 서부임진강하구권역 내 DMZ 산불지역 회복성 분석)

  • Kim, Jang Soo;Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.83-99
    • /
    • 2021
  • Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.

The development of PEMFC cathode using polyol method with directly grown CNT on carbon paper (Carbon paper에 직접적으로 생산한 CNT를 polyol 방법으로 Pt deposition하여 PEMFC cathode 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Since the discovery of the carbon nanotube(CNTs), they have attracted much attention because of unique properties that may impact many fields of science and technology. The considerable properties of CNTs include high surface area, outstanding thermal, electrical conductivity and mechanical stability. However, uniform deposition of Pt nanoparticles on carbon surface remains inaccessible territory because of the inert carbon surface. In this study, we prepared directly oriented CNTs on carbon paper as a catalyst support in cathode electrode. carbon surface was functionalized using aryl diazonium salt for increasing adhesion of Ni particles which is precursor for growing CNTs. For fabricate electrode, CNTs on carbon paper were grown by chemical vapor deposition using Ni catalyst and Pt nanoparticles were deposited on CNTs oriented carbon paper by polyol method. The performance was measured using Proton electrolyte Membrane Fuel Cell(PEMFC). The structure and morphology of the Pt nanoparticles on CNTs were characterized by Scanning electron Microscopy(SEM) and Transmission electron Microscopy (TEM). The average diameter of Pt nanoparticles was 3nm.

  • PDF

Investigation of Passing Ships in Inaccessible Areas Using Satellite-based Automatic Identification System (S-AIS) Data

  • Hong, Dan-Bee;Yang, Chan-Su;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.579-590
    • /
    • 2018
  • Shipping of North Korea is not yet publicly well documented. Taedong River, the most important sea route of North Korea, is selected as a model study area to show how effectively a remote place can be investigated through the application of satellite-based Automatic Identification System (S-AIS) for understanding shipping and tracks of vessels which passed the lock gate in the Taedong River and visited the nearby ports on its track. S-AIS data of the year 2014 were analyzed on the basis of various time periods, country of registry and category of ships. A total of 325 vessels were observed. The ships under the flags of North Korea, Cambodia and Sierra Leone were found to be dominant in frequencies which accounted for 43.08%, 16.00%, and 8.92%, respectively. Trajectories of the 325 ships in the Yellow Sea were also checked according to the flags. It is concluded that some ships under the flags of Cambodia, Sierra Leone, Mongolia, Panama and Kiribati are regarded as flags of convenience, and ships without flag and ship type codes also comprised a remarkable portion out of the total ships.

Reconstruction of esophageal stenosis that had persisted for 40 years using a free jejunal patch graft with virtual endoscopy assistance

  • Fujisawa, Daisuke;Asato, Hirotaka;Tanaka, Katsunori;Itokazu, Tetsuo;Kojya, Shizuo
    • Archives of Plastic Surgery
    • /
    • v.47 no.2
    • /
    • pp.178-181
    • /
    • 2020
  • In this report, we present a case in which good results were achieved by treatment using a free jejunal patch graft with virtual endoscopy (VE) assistance in a patient whose swallowing had failed to improve for 40 years after he mistakenly swallowed sulfuric acid, despite pectoralis major myocutaneous flap grafting and frequent balloon dilatation surgery. During the last 20 years, virtual computed tomography imaging has improved remarkably and continues to be used to address new challenges. For reconstructive surgeons, the greatest advantage of VE is that it is a noninvasive modality capable of visualizing areas inaccessible to a flexible endoscope. Using VE findings, we were able to visualize the 3-dimensional shape beyond the stenosis. VE can also help predict the area of the defect after contracture release.

A Study on Decision of Optimal Point of Single Facility Location when the Application Region is Divided into Two (장애물이 있는 경우 단일설비의 최적위치의 결정에 관한 연구)

  • 강성수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.5 no.7
    • /
    • pp.9-15
    • /
    • 1982
  • The rectilinear-distance location problem combines the property of being a very appropriate distance measure for a large number of location problems and the property of being very simple to treat analytically. An obvious question to be asked at the optimal point which is obtained by the rectilinear distance method is, "what if the point is not available as a location site\ulcorner." The point may, for example, be inaccessible or may coincide with the location of another structure, a river, or a municipal park. In this case, one approach that may be employed is to construct contour lines (also called iso-cost or level curves) of the cost function. Contour lines provide considerable insight into the shape of the surface of the total cost function as well as a useful means of evaluating alternative locations for the new facility. But, when there is an obstacle which divides the application area into two. The optimal location(which is acquired by the rectilinear distance method) is not coincide with the minimal cost point and the contour line is occasionally of no use, this paper shows the method of finding a way to decide an optimal point of single facility location in this case.this case.

  • PDF

Real-time comprehensive image processing system for detecting concrete bridges crack

  • Lin, Weiguo;Sun, Yichao;Yang, Qiaoning;Lin, Yaru
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.445-457
    • /
    • 2019
  • Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

Development of Building Monitoring Techniques Using Augmented Reality (증강현실을 이용한 건물 모니터링 기법 개발)

  • Jeong, Seong-Su;Heo, Joon;Woo, Sun-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.3-12
    • /
    • 2009
  • In order to effectively distribute the resources, it is very critical to understand the status or progress of construction site quickly and accurately. Augmented Reality (AR) can provide this situation with information which is convenient and intuitive. Conventional implementation of AR in outdoor or construction site condition requires additional sensors or markers to track the position and direction of camera. This research is aimed to develop the technologies which can be utilized in gathering the information of constructing or constructed buildings and structures. The AR technique that does not require additional devices except for the camera was implemented to simplify the system and improve utility in inaccessible area. In order to do so, the position of camera's perspective center and direction of camera was estimated using exterior orientation techniques. And 3D drawing model of building was projected and overlapped using this information. The result shows that by using this technique, the virtual drawing image was registered on real image with few pixels of error. The technique and procedure introduced in this paper simplifies the hardware organization of AR system that makes it easier for the AR technology to be utilized with ease in construction site. Moreover, this technique will help the AR to be utilized even in inaccessible areas. In addition to this, it is expected that combining this technique and 4D CAD technology can provide the project manager with more intuitive and comprehensive information that simplifies the monitoring work of construction progress and planning.

Analysis of Ground Subsidence using ALOS PALSAR (2006~2010) in Taebaek, Kangwon (ALOS PALSAR(2006년~2010년) 위성영상을 이용한 강원도 태백시 지반침하 관측 및 분석)

  • Cho, Min-Ji;Kim, Sang-Wan
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • We performed DInSAR (Differential Interferometric SAR) and SBAS (Small BAseline Subset) analysis using spaceborne SAR (Synthetic Aperture Radar) in order to detect a surface subsidence in Taebaek area, Kangwon, which are suitable to the monitoring of broad and inaccessible areas. During the period from October 2006 to June 2010, we acquired twenty-three ALOS PALSAR data sets (path/frame=425/730) for this study. The ninety-six differential interferograms with a perpendicular baseline less than 1100 m were constructed by ROI_PAC, then the mean velocity map of surface displacement was derived from SBAS analysis. As a result, it was confirmed that the ground displacement occurred about 4 cm/yr at Seokgong-Jangseong and Kyungdong mines and 2 cm/yr at Saehan-Eoryong-Jungdong and Hwangji mines in Taebaek area, Kangwon. It seems that the subsidence in study area is closely related to mining activities because the most of subsiding areas are well matched with mining areas. The subsidence at Kyungdong mine shows continuous and fast velocity in about $2{\times}2$ km area. Therefore the further analysis and the effort to prevent disaster are required in this area.