• Title/Summary/Keyword: InSnZnO

Search Result 289, Processing Time 0.03 seconds

RF-Magnetron Sputtering법에 의해 성막된 $Ga_2O_3$가 혼합된 ZnO박막의 전기적 및 광학적 특성

  • Kim, Mi-Seon;Bae, Gang;Son, Seon-Yeong;Hong, U-Pyo;Kim, Hwa-Min;Lee, Jong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.120-120
    • /
    • 2010
  • 최근 투명전도성 산화물(Transparent Conductive Oxide, TCO) 박막은 액정 표시소자(LCD), 플라즈마 디스플레이 패널(PDP), 압전소자 및 태양전지의 투명소자로 사용되어지고 있다. 현재 가장 널리 사용되어지고 있는 투명전극물질인 인듐주석산화물(indium tin oxide, ITO)은 낮은 비저항과 높은 투과율을 가지고 있지만, 높은 원자재의 가격 및 수소플라즈마 처리시 In과 Sn이 환원되어 전기적, 광학적으로 불안정한 문제점들이 지적되고 있다. 이러한 문제점들을 해결하기 위해 최근 적외선 및 가시광선 영역에서 높은 투과도 및 전기 전도성과 수소플라즈마에 대한 화학적 안정성을 갖는 ZnO를 기반으로 3족 원소를 첨가한 새로운 투명 전도막에 대한 연구가 활발하다. 본 연구에서는 RF-Magnetron Sputtering법을 이용하여 $Ga_2O_3$ 혼합비에 따라 제작된 ZnO(GZO) 박막들의 전기적, 광학적, 구조적인 특성들을 분석하였다. 측정결과, $Ga_2O_3$의 첨가량이 7 wt.%인 GZO 박막이 가시광선영역에서 80%이상의 높은 투과율과 $50.5\;\Omega/\Box$의 가장 낮은 면저항을 나타내었다. 이는 Ga원소가 다른 3족 원소와 격자결합을 비교할 때, 이온의 크기가 Zn원소와 비슷하여 최적화된 혼합율을 가지는 경우 격자결합을 최소화시켜 캐리어 밀도의 증가로 인해 높은 전도성을 가지며, 고온에서도 전기적 특성 및 내구성이 향상되기 때문이다. 또한 기판온도에 따른 열처리 특성으로서 기판의 온도를 $100^{\circ}{\sim}400^{\circ}C$까지 변화를 주어 실험하였다. X-선 회절패턴 분석결과 기판온도가 증가함에 따라 ZnO (002) 방향이 감소하는 반면 ZnO(103) 방향이 증가하였으며, 기판온도가 $300^{\circ}C$ 일 때 $17.1\;\Omega/\Box$의로 가장 낮은 면저항이 나타났다. 이는 SEM 이미지를 분석한 결과, 실온에서 제작된 박막과 비교해 300 에서 증착된 GZO 박막이 결정립의 크기가 크고 밀도도 조밀해져 전하의 이동도가 향상되었기 때문이다.

  • PDF

The performance dependency of the organic based solar cells on the variation in InZnSnO thickness

  • Choi, Kwang-Hyuk;Jeong, Jin-A;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.268-268
    • /
    • 2010
  • The performance dependence of the P3HT:PCBM based bulk hetero-junction (BHJ) organic solar cells (OSCs) on the electrical and the optical properties of amorphous InZnSnO (a-IZTO) electrodes as a difference in film thicknesses are examined. With an increasing of the a-IZTO thickness, the series resistance ($R_{series}$) of the OSCs is reduced because of the reduction of sheet resistance ($R_{sheet}$) of a-IZTO electrodes. Additionally, It was found that the photocurrent density ($J_{sc}$) and the fill factor (FF) in OSCs are mainly affected by the electrical conductivity of the a-IZTO anode films rather than the optical transparency at thinner a-IZTO films. On the other hand, despite the much lower $R_{series}$ comes from thicker anode films, the dominant factor affecting the $J_{sc}$ became average optical transmittance of a-IZTO electrodes as well as power conversion efficiency (PCE) in same device configuration due to the thick anode films had as sufficiently low $R_{sheet}$ to extract the hole carrier from the active material.

  • PDF

Development of gas sensor using $Pt/MoO_{3}$ system ($Pt/MoO_{3}$ 구조를 이용한 가스 센서의 개발)

  • 김창교;김진걸;유광수;최용일;한득영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.213-219
    • /
    • 1996
  • Pellet type $Pt/MoO_{3}$ gas sensor which is operating at much lower temperature than conventional ceramic sensors such as $SnO_{2}$ or ZnO was fabricated. Morphology and crystal structure of $Pt/MoO_{3}$ according to calcination temperature have been characterized with Transmission Electron microscopy and X-Ray powder diffraction. The characterization indicates that as calcination temperature is increased, overlayers of $MoO_{3}$ on Pt are produced, but additionally, the Cl content associated with the Pt phase diminishes. The gas dasorption test showed that the change in surface morphology is closely related to hydrogen storage capacity of the sample. The gas sensitivities at $50^{\circ}C$ and $150^{\circ}C$ are very high.

  • PDF

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • Kim, Do-Hyeon;Kim, Gi-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF

Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films

  • Gong, Tae-Kyung;Moon, Hyun-Joo;Kim, Daeil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.121-124
    • /
    • 2016
  • ZnSnO3 (ZTO)/Ag/ ZnSnO3 (ZTO) trilayer films were prepared on glass substrates by radio frequency (RF) and direct current (DC) magnetron sputtering. The electrical resistivity and optical transmittance of the films were investigated as a function of the Ag interlayer thickness. ZTO films with a 15 nm thick Ag interlayer show the highest average visible transmittance (83.2%) in the visible range. In this study, the highest figure of merit (2.1×10−2 Ω cm) is obtained with the ZTO 50 nm/Ag 15 nm/ZTO 50 nm films. The enhanced optical and electrical properties of ZTO films with a 15 nm thick Ag interlayer are attributed to the crystallization of the Ag interlayer, as supported by the distinct XRD pattern of the Ag (111) peaks. From the observed results, higher optical and electrical performance of the ZTO film with a 15 nm thick Ag interlayer seems to make a promising alternative to conventional transparent conductive ITO films.

Development of Ceramic Pigment using Brass Scrap (각종 황동 Scrap를 사용한 Ceramic 안료 개발)

  • Kim, Jun-Ho;Jeon, Ok-Hyun;Suh, Man-Chul;Lee, Byung-Ha
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.197-204
    • /
    • 2007
  • Ceramic pigments were developed by using 4 kinds of Brass scraps. Each Brass scraps were mixed with same weight-ratio of Husk ash, and fine-ground by Rotate ring mill(RRG-120, Armstech industrial. co. Ltd, Korea) after firing at $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. As a result, analysis of particle size of synthetic pigments by particle size analyser, they are $3{\mu}m$ as average. The resulting pigments were characterized by using XRD, FT-IR, SEM Structure of the crystals are Zn2SiO4,, and ZnO, Cu2O, CuO, and cristobalite are existed and particles' shape are plate or needle. As a result of analysis of chemical composition by XRF, synthetic pigments have high SiO2 and CuO content and have SnO2, ZnO and NiO, too. 1wt%, 3wt% and 5wt% pigments were added in each lime glaze, lime-barium glaze and lime-magnesia glaze, and fired at oxidation and reducing atmosphere to figure hue in glazes out. As a result of analysis of color, chroma and brightness by UV, colors of glazes fired at oxidation atmosphere turned into green from sky blue, and colors of glazes fired at reducing atmosphere turned into pink and red.

Electrical and Optical Properties of ITZO Thin Films Deposited by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링법에 의해 제작된 ITZO (indium tin zinc oxide) 박막의 전기적 및 광학적 특성)

  • Seo, Jin-Woo;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1873-1878
    • /
    • 2013
  • ITZO ($In_2O_3$ : $SnO_2$ : ZnO = 90wt.% : 5wt.% : 5wt.%) thin films were fabricated on glass substrates (Eagle 2000) at room temperature with various working pressures (1~7 mTorr) by RF magnetron sputtering. The influence of the working pressure on the structural, electrical, and optical properties of the ITZO thin films were investigated. The XRD and FESEM results showed that all ITZO thin films are amorphous structures with very smooth surfaces regardless of the working pressure. Amorphous ITZO thin films deposited at 3 mTorr showed the best properties, such as a low resistivity, high transmittance, and figure of merit of $3.08{\times}10^{-4}{\Omega}{\cdot}cm$, 81 %, and $10.52{\times}10^{-3}{\Omega}^{-1}$, respectively.

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.