Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.196.2-196.2
/
2013
본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.
Superluminescent diodes (SLD) with the emitting wavelength of $1.55{\mu}m$ was fabricated on InGaAs quantum dot structure grown by MOCVD. The output power and 3-dB bandwidth at room temperature and continuous wave operation were 3 mw and 55 nm, respectively.
Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.
Kim, Jin-Soo;Lee, Jin-Hong;Hong, Sung-Ui;Kwack, Ho-Sang;Lee, Chul-Wook;Oh, Dae-Kon
ETRI Journal
/
v.26
no.5
/
pp.475-480
/
2004
Self-assembled InAs quantum dots (QDs) embedded in an InAlGaAs matrix were grown on an InP (001) using a solid-source molecular beam epitaxy and investigated using transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. TEM images indicated that the QD formation was strongly dependent on the growth behaviors of group III elements during the deposition of InAlGaAs barriers. We achieved a lasing operation of around 1.5 ${\mu}m$ at room temperature from uncoated QD lasers based on the InAlGaAs-InAlAs material system on the InP (001). The lasing wavelengths of the ridge-waveguide QD lasers were also dependent upon the cavity lengths due mainly to the gain required for the lasing operation.
In this study, we analyzed the electrical and optical properties of metalorganic chemical vapor deposition grown InGaAs/InGaAsP/InP quantum dot(QD) molecules by using photoluminescence and deep-level transient spectroscopy. From these resulte, the energy levels of the large QDs are located at deeper region from the conduction band edge of the barrier than that of the small QDs, The large QDs seem to have the energy states more than two, and these energy levels of the QD molecules are located at 0.35, 0.42, and 0.45 eV from conduction band edge under -4 V reverse bias conditions. The energy levels are closely coupled under low reverse bias, and then decoupled as the bias voltage is increased.
We have investigated optical properties of p-modulation doped In(Ga)As quantum dots (QDs) on InP substrate with a comparison with the undoped QDs. Photoluminscence (PL) intensity of doped QDs at 10 K was about 10 times weaker than that of undoped QD sample. The decay time of doped QD sample at its PL peak, obtained from the time-resolved PL (TR-PL) experiment at 10 K, was very fast compared to that of undoped sample. We interpret that this fast decay time of the doped QD sample comes from the addition of non-radiative recombination paths, which are originated from the doping-related defects.
Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
Journal of the Korean Vacuum Society
/
v.22
no.1
/
pp.37-44
/
2013
In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.
Kim, Jong-Su;Han, Im-Sik;Lee, Seung-Hyeon;Son, Chang-Won;Lee, Sang-Jo;Smith, Ryan P.;Ha, Jae-Du;Kim, Jin-Su;No, Sam-Gyu;Lee, Sang-Jun;Choe, Hyeon-Gwang;Im, Jae-Yeong
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.107-107
/
2012
본 연구에서는 GaAs p-i-n 태양전지구조에 InAs 양자점을 삽입하여 계면의 전기장 변화를 Photoreflectance (PR) 방법으로 연구하였다. InAs/GaAs 양자점 태양전지구조는 n-GaAs 기판위에 p-i-n 구조의 태양전지를 분자선박막성장 장치를 이용하여 제작하였다. GaAs p-i-n 태양전지와 p-QD(i)-n 양자점 태양전지를 제작하여 계면전기장의 변화를 PR 신호에 나타난 Franz-Keldysh oscillation (FKO)으로부터 측정하였다. 기본적인 p-i-n 구조에서 두 가지 전기장성분을 검출 하였고 양자점 태양전지구조에서는 39 kV/cm 이상의 내부전기장이 존재함을 관측하였다. 이러한 내부전기장은 양자점 주변에 형성된 국소전기장의 효과로 추측하였다. 아울러 양자점을 AlGaAs 양자우물 구조에 삽입하여 케리어의 구속에 의한 FKO의 변화를 관측하였으며 양자점 태양전지의 구조적 변화에 따른 효율을 측정하여 비교 분석하였다.
O, Jae-Won;Gwon, Se-Ra;Ryu, Mi-Lee;Jo, Byeong-Gu;Kim, Jin-Su
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.265-265
/
2011
자발형성법으로 InP (001) 기판에 성장한 InAs/InAlGaAs 양자점(QDs: quantum dots)의 광학적 특성을 PL (photoluminescence)와 TRPL (time-resolved PL)을 이용하여 분석하였다. InAs QDs 시료는 single layer InAs QDs (QD1)과 7-stacked InAs QDs (QD2)를 사용하였다. 두 시료 모두 저온 (10 K)에서 1,320 nm에서 PL 피크가 나타나고, 온도가 증가함에 따라 PL 피크는 적색편이 (red-shift)를 보였다. 양자점의 온도를 10 K에서 300 K까지 증가하였을 때 QD1은 178 nm 적색편이 하였으며, PL 스펙트럼 폭은 온도가 증가함에 따라 증가하였다. 그러나 QD2는 264 nm 적색편이를 보였으며 PL 스펙트럼의 폭은 QD1 시료와 반대로 온도가 증가함에 따라 감소하였다. QD2의 아주 넓은 PL 스펙트럼 폭과 매우 큰 적색편이는 InAs 양자점 크기의 변화가 QD1에 비해 훨씬 크기 때문이다. QD2의 경우 InAs 층수(layer number)가 증가함에 따라 InAs QD의 크기가 점차 증가하므로 QD 크기의 변화가 single layer인 QD1 시료보다 훨씬 크다. QD1의 PL 소멸은 파장이 증가함에 따라 점차 느려지다가 PL 피크 근처에서 가장 느린 소멸 곡선을 보이고, 파장이 더 증가하였을 때 PL 소멸은 점차 빠르게 소멸하였다. 그러나 QD2의 PL 소멸곡선은 파장이 증가함에 따라 점차 빠르게 소멸하였다. 이것은 QD2는 양자점 크기의 변화가 매우 크기 때문에 (lateral size=18~29 nm, height=2.8~5.9 nm) 방출파장이 증가함에 따라 양자점 사이의 파동함수의 겹침이 증가하여 캐리어의 이완이 증가하기 때문으로 설명된다. 온도에 따른 TRPL 결과는 두 시료 모두 10 K에서 150 K 까지는 소멸시간이 증가하였고, 150 K 이후부터는 소멸시간이 감소하였다. 온도가 증가함에 따라 소멸시간이 증가하는 것은 양자점에서 장벽과 WL (wetting layer)로 운반자(carrier)의 이동, 양자점들 사이에 열에 의해 유도된 운반자의 재분배 등으로 인한 발광 재결합으로 설명할 수 있다. 150 K 이상에서 소멸시간이 감소하는 것은 열적효과에 의한 비발광 재결합 과정에 의한 운반자의 소멸이 증가하기 때문이다. 온도에 따른 TRPL 결과는 두 시료 모두 150 K까지는 발광재결합이 우세하고, 150 K 이상에서 비발광재겹합이 우세하게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.