• 제목/요약/키워드: InAs quantum dot

검색결과 264건 처리시간 0.029초

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate

  • Simonyan, Arpine K.;Gambaryan, Karen M.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.303-311
    • /
    • 2017
  • The continuum elasticity model is applied to investigate quantitatively the growth features and nucleation mechanism of quantum dots, nanopits, and joint QDs-nanopits structures in GaInAlN quasyternary systems. We have shown that for GaInAlN material system at the critical strain of ${\varepsilon}^*=0.039$ the sign of critical energy and volume is changed. We assume that at ${\varepsilon}={\varepsilon}^*$ the mechanism of the nucleation is changed from the growth of quantum dots to the nucleation of nanopits. Obviously, at small misfit (${\varepsilon}$ < ${\varepsilon}^*$), the bulk nucleation mechanism dominates. However, at ${\varepsilon}$ > ${\varepsilon}^*$, when the energy barrier becomes negative as well as a larger misfit provides a low-barrier path for the formation of dislocations, the nucleation of pits becomes energetically preferable. The free energy of mixing for $Ga_{1-x-y}In_xAl_yN$ quasiternary system was calculated and studied and its 3D sketch was plotted.

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

808 nm InAlAs 양자점 레이저 다이오드 구조의 전기적 특성 (Electrical Characteristics of 808 nm InAlAs Quantum Dot Laser Diode Structure)

  • 서유정;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.338-338
    • /
    • 2010
  • 지난 20여년 동안 반도체 레이저 다이오드는 주로 CD (DVD) 픽업용 (파장: 640 nm 이하) 및 통신용 (파장 1550 nm) 광원 분야에서 집중적으로 개발되어 왔다. 그러나 기술의 개발과 더불어 파장조절이 비교적 자유로워지고 광출력이 증대 되면서 기존의 레이저 고유의 영역까지 그 응용분야기 확대되고 있고, 이에 따라 고출력 반도체 레이저 다이오드의 시장 규모도 꾸준히 증가되고 있는 상황이다. 고출력 반도체 레이저 다이오드는 발진 파장 및 광출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 인 고출력 레이저 다이오드의 경우 재료가공, 펌핑용 광원 (DPSSL, 광섬유 레이저), 의료, 피부미용 (점 제거), 레이저 다이오드 디스플레이 등 가장 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. MBE(Molecular Beam Epitaxy)로 성장된 InAlAs 에피층 (epi-layer)을 사용하여 고출력을 갚는 레이저 다이오드를 제작함에 있어서, 에피층은 결함 (defect)이 없는 우수한 단결정이 요구되지만, 실제 결정 성장 과정에서는 성장온도와 Al 조성비 등의 성장 조건의 변화에 따라 전기적 광학적 특성 및 신뢰성에 큰 영향을 받는 것으로 보고되고 있다. 이에 본 연구에서는 DLTS (Deep Level Transient Spectroscopy) 방법을 이용하여 InAlAs 양자점 에피층의 깊은 준위 거동을 조사하였다. DLTS 측정 결과, 0.3eV 부근의 point defect과 0.57 ~ 0.70 eV 영역의 trap이 조사되었으며, 이는 갈륨 (Ga) vacancy와 산소 원자의 복합체에 기인한 결함으로 분석된다.

  • PDF

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • 이재웅
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.