• 제목/요약/키워드: In-wheel SRM

검색결과 5건 처리시간 0.022초

복지형 NEV용 외전형 인-휠 SRM 설계 (Design of Outer Rotor Type In-Wheel SRM for Welfare Neighborhood Electric Vehicle)

  • 정광일;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.323-324
    • /
    • 2010
  • In this paper, outer rotor type of in-wheel switched reluctance motor(SRM) has been design and analyzed for Welfare Neighborhood Electric Vehicle(WNEV). Designed outer rotor type of in-wheel SRM is set to 4-wheel of WNEV. the motor is 6/8 and outer rotor type. and the driving load and motor characteristics are determined and designed.

  • PDF

복지형 NEV용 외전형 In-Wheel SRM 설계 (Design of Outer Rotor Type In-Wheel SRM for Welfare Neighborhood Electric Vehicle)

  • 정광일;이동희;안진우
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.309-314
    • /
    • 2011
  • Outer rotor type in-wheel switched reluctance motor for Welfare neighborhood electric vehicle is researched. In-wheel system is to drive the electric vehicle without mechanical transmission, shaft, differential gears or other mechanical system. To calculate drive power for each wheels, the elder's and disable's safety driving conditions are considered. The designed outer rotor SRM has a 6-stator and 8-rotor pole. The determined dimensions as well as the stator and rotor pole arc are simulated and tested with CAD and finite element analysis to verify the performance of the proposed motor.

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계 (Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging)

  • 그레이스;손동호;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

Design and comparative study of various Two-Dimensional Grain Configurations based on Optimization Method

  • Nisar, Khurram;Liang, Guozhu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.226-234
    • /
    • 2008
  • Grain design has always been a vital and integral part of Solid Rocket Motor(SRM) design. Basing on the design objectives set by the system designer, the SRM designer has many options available for selecting the Grain configuration. Many of the available configurations may fulfill the required parameters of volumetric loading fraction, web fraction & Length to diameter ratios and produce internal ballistic results that may be in accordance to the design objectives. However, for any given set of design objectives, it is deemed necessary that best possible configuration be selected, designed and optimized. Hence optimal results of all applicable configurations are vital to be attained in order to compare and finalize the design that will produce most efficient performance. Generally the engineers pay attention and have skills on a specific grain configuration. The designing methodologies and computer codes available usually focus on single grain configuration may it be Star, Wagon Wheel or slotted tube. Hardly one can find a software or a design methodology where all such configurations can be worked on jointly and not only adequate designs be found but optimal solutions reached by applying an optimization method to find final design best suited for any design objective. In the present work design requirements have been set, grain configurations have been selected and their designing has been conducted. The internal ballistic parameters have been calculated and after finding the preliminary design solutions, the optimal solutions have been found. In doing so, software has been developed comprising of computer programs for designing the 2D grains including Star, Wagon Wheel and Slotted Tube configurations. The optimization toolbox of Matlab Fmincon has been used for getting optimal solutions. The affects of all the independent geometric design variables on the optimized solutions have been analyzed. Based on results attained from Optimization Method, an in depth comparison of Grain Configurations and analysis of performance prediction outputs have been conducted to come to conclusion as to which grain configuration is ideal for the current design requirement under study.

  • PDF