• 제목/요약/키워드: In-water Algorithm

검색결과 1,383건 처리시간 0.032초

저전력 센싱 알고리즘을 활용한 무선 디지털 수도 계량기 시스템 (A Wireless Digital Water Meter System using Low Power Sensing Algorithm)

  • 은성배;신강욱;이영우;오승엽
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권5호
    • /
    • pp.315-321
    • /
    • 2009
  • U-city 등에서 원격 디지털 수도 검침 시스템의 수요가 증가하고 있다. 디지털 수도 미터는 센서의 종류에 따라 다양한데 홀센서를 사용한 방식은 정밀도가 높다는 장점이 있으나 기존의 알고리즘은 전력소모가 큰 것이 단점이다. 본 논문에서는 정밀도를 유지하면서 저전력 소모를 추구하는 센싱 알고리즘을 제시한다. 우리의 방식은 물의 사용 여부를 정밀도는 떨어지나 전력소모가 작은 홀센서를 이용하여 센싱하는 것이다. 물이 사용되기 시작하면 정밀도가 높은 홀 센서를 사용하여 사용량을 계측한다. 우리의 알고리즘이 기존의 방식보다 전력소모를 2배 가량 줄일 수 있음을 분석을 통하여 보였다.

IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현 (Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring)

  • 박지훈;강문성;송정헌;전상민
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.

Robust sliding mode control for a USV water-jet system

  • Kim, HyunWoo;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.851-857
    • /
    • 2019
  • A new robust sliding mode control with disturbance and state observers has been proposed to control the nozzle angle of a water-jet system for a Unmanned Surface Vehicle (USV). As the water-jet system of a ship is subjected to direct disturbances owing to the exposure to the marine environment in water, it requires a robust control. A state observer and a disturbance observer are added to the water jet nozzle control system to achieve a robust control against disturbances. To verify the performance of the proposed algorithm, a test bed is constructed by a propulsion system used in the popular USV. This proposed algorithm has been evaluated by comparing to the existing algorithm through experiments. The results show that the performance of the proposed algorithm is better than that of the conventional PID or sliding mode controller when controlling the steering of the USV with disturbances.

Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City

  • Heesung Lim;Hyunuk An;Gyeongsuk Choi;Jaenam Lee;Jongwon Do
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.193-202
    • /
    • 2022
  • The recurrent neural network (RNN) algorithm has been widely used in water-related research areas, such as water level predictions and water quality predictions, due to its excellent time series learning capabilities. However, studies on water quality predictions using RNN algorithms are limited because of the scarcity of water quality data. Therefore, most previous studies related to water quality predictions were based on monthly predictions. In this study, the quality of the water in a reservoir in Nonsan, Chungcheongnam-do Republic of Korea was predicted using the RNN-LSTM algorithm. The study was conducted after constructing data that could then be, linearly interpolated as daily data. In this study, we attempt to predict the water quality on the 7th, 15th, 30th, 45th and 60th days instead of making daily predictions of water quality factors. For daily predictions, linear interpolated daily water quality data and daily weather data (rainfall, average temperature, and average wind speed) were used. The results of predicting water quality concentrations (chemical oxygen demand [COD], dissolved oxygen [DO], suspended solid [SS], total nitrogen [T-N], total phosphorus [TP]) through the LSTM algorithm indicated that the predictive value was high on the 7th and 15th days. In the 30th day predictions, the COD and DO items showed R2 that exceeded 0.6 at all points, whereas the SS, T-N, and T-P items showed differences depending on the factor being assessed. In the 45th day predictions, it was found that the accuracy of all water quality predictions except for the DO item was sharply lowered.

GOCI영상의 탁한 해역 대기보정: MUMM 알고리즘 개선 (Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm)

  • 이보람;안재현;박영제;김상완
    • 대한원격탐사학회지
    • /
    • 제29권2호
    • /
    • pp.173-182
    • /
    • 2013
  • 천리안 위성 해양탑재체(Geostationary Ocean Color Imager, GOCI) 대기보정의 근간이 되는 Sea-viewing Wide Field-of-view Sensor(SeaWiFS) 초기 대기보정 기법은 근적외선 파장대의 해수 반사도를 0으로 가정한다. 이러한 가정에 근거하여 근적외선 파장에서 탐지되는 모든 신호는 에어로졸 산란에 의한 반사도로 간주된다. 그러나 이러한 가정은 탁한 해역에서 해수 반사도를 과소 추정하는 문제점을 야기시킨다. 이를 해결하기 위하여 Management Unit of the North Sea Mathematical Models(MUMM) 대기보정 알고리즘이 개발되었다. 이 알고리즘은 근적외선 파장에서 탐지되는 해수 반사도 비율인 ${\alpha}$를 도입하였다. ${\alpha}$는 통계적 방법에 의하여 결정되며 영상 내의 모든 픽셀에 고정적인 값으로 사용된다. 이 알고리즘은 근적외선 해수 반사도가 0.01보다 작은 중간 탁도의 해역에서는 잘 맞는 반면 매우 탁한 해역에서는 ${\alpha}$가 탁도에 따라 변하기 때문에 오차율이 다시 증가한다. 본 연구에서는 매우 탁한 해역 해수 반사도의 정확도를 향상시키고자 ${\alpha}$를 고정하지 않고, 반복계산을 통해 탁도에 적합한 ${\alpha}$를 계산하도록 MUMM 알고리즘을 수정 보완하였다. 그 결과 MUMM 알고리즘의 모든 밴드의 평균 Root Mean Square Error(RMSE)는 0.0048인 반면 수정된 MUMM 알고리즘은 0.002로 개선된 결과를 얻었다.

대청호 Chl-a 예측을 위한 random forest와 gradient boosting 알고리즘 적용 연구 (A study on applying random forest and gradient boosting algorithm for Chl-a prediction of Daecheong lake)

  • 이상민;김일규
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.507-516
    • /
    • 2021
  • In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

상수관망의 누수감지를 위한 주성분 분석의 적용 가능성에 대한 연구 (Study on the applicability of the principal component analysis for detecting leaks in water pipe networks)

  • 김기민;박수완
    • 상하수도학회지
    • /
    • 제33권2호
    • /
    • pp.159-167
    • /
    • 2019
  • In this paper the potential of the principal component analysis(PCA) technique for the application of detecting leaks in water pipe networks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study which were designed to extract a partial set of flow data from the original 24 hour flow data so that the effective outlier detection rate was maximized. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The developed algorithm may be applied in determining further leak detection field work for water distribution blocks that have more than 70% of the effective outlier detection rate. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks by considering series of leak reports happening in a relatively short period.

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF

Reassessment on SEBAL Algorithm and MODIS Products

  • 오랑치맥 솜야;권현한;김현묵;김윤희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.230-230
    • /
    • 2016
  • Hydrological modeling is a very complex task dealing with multi-source of data, but it can be potentially benefited from recent improvements and developments in remote sensing. The estimation of actual land surface evapotranspiration (ET), an important variable in water management, has become possible based entirely on satellite data. This study adopted a Surface Energy Balance Algorithm for Land (SEBAL) with the use of MODerate Resolution Imaging Spectrometer (MODIS) satellite products. The SEBAL model is one of the commonly used approach for the ET estimation. A primary advantage of the SEBAL model is rather its minimum requirement for ground-based weather data. The MODIS provides ET (MOD16) product that is based on the Penman-Monteith equation. This study aims to further develop the SEBAL model by employing a more rigorous parameterization scheme including the estimation of uncertainty associated with parameter and model selection in regression model. Finally, the proposed model is compared with the existing approaches and comprehensive discussion is then provided.

  • PDF