• Title/Summary/Keyword: In-situ soil

Search Result 760, Processing Time 0.022 seconds

Cutting Propagation and Seedling Growth Effect According to Fertilizer Application of Elsholtzia minima Nakai (좀향유의 삽목 증식 및 시비에 따른 유묘의 생장 효과)

  • Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Jin-Young;Lee, Hee-Seon;Ko, Seok-Hyung;Lee, You-mi;Song, Chang-Khil
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.243-252
    • /
    • 2015
  • This study was performed to establish a production system for in situ and ex situ conservation of Elsholtzia minima Nakai, an endemic plant grown in Jeju Island. Moreover, this study aimed to identify root-growth characteristics according to the use of pre-treatment agents and seedling growth effect according to fertilizer application. The mean temperature was similar in greenhouse and vinyl-moist chamber, but air humidity was higher in vinyl-moist chamber than in greenhouse. After stem planting of Elsholtzia minima Nakai, initial root growth was observed after 10 days in greenhouse and after 7 days in vinyl-moist chamber. Root growth rate was more rapid in vinyl-moist chamber. Moreover, survival rate, root growth rate and root number was slightly higher in vinyl-moist chamber than in greenhouse, indicating that vinyl-moist chamber is more effective in plant growth. When pre-treatment agents were used to remove root growth-inhibiting substances, a higher root growth rate of more than 95% was found in pre-treatment groups, excluding the group treated with AgNO3 at 77.5%. Thus, Elsholtzia minima Nakai is thought to have less root growth inhibitors. In the analysis of nitrogen application rate and Osmocote application by seedling container, a difference was found in survival rate and growth according to application rate and container conditions. When Osmocote, a slow release fertilizer, was applied to the soil surface around each culture container, survival rate and the growth of aerial and root parts were most favorable. Thus, Osmocote fertilizer is thought to be desirable for seedling propagation of Elsholtzia minima Nakai.

Hardwood Cutting Propagation and Early Growth Characteristics of Empetrum nigrum var. japonicum K. Koch (시로미의 숙지삽목 증식 및 초기생장 특성)

  • Kim, Hong-Lim;Kim, Chan-Soo;Koh, Seok-Chan;Koh, Jung-Goon
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.530-536
    • /
    • 2006
  • Hardwood cutting propagation and early growth characteristics were investigated in order to develop the method of cutting propagation and to find out growth characteristics in the low altitude for in situ and ex situ conservation of Empetrum nigrum var. japonicum K. Koch, which is typical arctic alpine plants on Mt. Halla. The growth of roots and shoots was different depending on hormone concentrations or soil conditions. The survival rate, rooting rate, root growth, number of root and shoot growth increased with treatment of 100 mg/l or 500 mg/l NAA. Consequently, optimum condition of hardwood cutting was at treatment with 100 mg/l or 500 mg/l NAA. When plantlets from hardwood cuttings were exposed to the field condition, after 7 months survival rate was 73.3% without shading while $91.1{\sim}94.4%$ at shading conditions. In the green house, however, survival rate of plantlets were $95.6{\sim}97.8%$ without shading. The growth of plantlets was different depending on sites and shading conditions. Particularly, the best growth was obtained when the plantlets were grown in shading conditions. It indicates that relative humidity and light intensity are correlated with the growth in the low altitude area.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 -)

  • Choi, Yongkyu;Lee, Wonje;Lee, Chang Uk;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.17-30
    • /
    • 2019
  • Based on pile load test results for various pile types that were constructed in-situ and pile design data of prebored PHC piles, the ratio of skin friction to total capacity (SRF) was analyzed. A SRF distribution range from the pile load test results for pilot test prebored PHC piles was 42~99% regardless of relative penetration lengths, soil types, and pile load test types. However, a SRF distribution range from the pile design data for prebored PHC piles was 20~53% regardless of relative penetration lengths and pile diameters. Also, a SRF distribution range from the restrike dynamic pile load test results for pretest working prebored PHC piles was a scattered range of 4~83% regardless of pile diameters, relative penetration lengths and soil types. The scattered SRF of pretest working piles was caused to the quality control issue on the filling of cement milk around piles and this quality control issue should be improved. The average SRF calculated by the current design method was estimated to be 2.2 times lower than the average SRF of the pilot test piles. It is because skin friction resistance is calculated at a very low level. Therefore, a new design method for skin friction will be proposed based on this study.

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

Correlation Coefficients between Pine Mushroom Emergence and Meteorological Elements in Yangyang County, Korea (양양지역 송이 발생과 기상요소의 상관관계)

  • Shim, Kyo-Moon;Ko, Cheol-Soon;Lee, Yang-Soo;Kim, Gun-Yeob;Lee, Jeong-Taek;Kim, Soon-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2007
  • The relationships between pine mushroom emergence and meteorological factors were analyzed with three years (from 2003 to 2005) of measurement data at Yangyang site, in order to evaluate the effect of micrometeorological environment on pine mushroom production. fine mushroom was daily monitored and collected in the survey area during the its producing period (approximately one month). Pine mushroom production was highest in 2005 with the meteorological conditions of high temperature and frequent rainfalls in October. The production was lowest in 2004 due to dry conditions from mid September to late October, The meterological factors related to humidity (i.e., relative humidity, soil water content, and precipitation) were better correlated than those related to temperature (i.e., air and soil temperature, soil heat flux and solar radiation) with pine mushroom production. However, all of the correlation coefficients were statistically insignificant with values ranging from 0.15 to 0.46. Such poor correlations may be attributed to various other environmental conditions (e.g., topography, soil, vegetation, other fungi, the relationship between pine mushroom and pine forest) affecting pine mushroom production. We found that a mycelium requires a stimulation of low temperature (of three-day moving average) below $19.5^{\circ}C$, in order to farm a mushroom primordium which grows to pine mushroom after 16 days from the stimulation. We also found that the pine mushroom production ended when the soil temperature (of three-day moving average) fell below $14.0^{\circ}C$.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.

A Study for Joint Freezing in Concrete Pavement (콘크리트포장의 줄눈의 잠김에 대한 연구)

  • Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.165-176
    • /
    • 2001
  • Joints in jointed concrete Pavement are designed to control against randomly occurred cracks within slabs, which may be caused by temperature or moisture variation. The advantage of these artificial cracks (joints) over naturally occurred cracks are easy access of protections, such as installation of joint seal and load transfer mechanism. The potential benefits of joint seals are to prevent infiltration of surface water through the joint into underlying soil and intrusion of incompressible materials (debris, fine size aggregate) in to the joint, which may prevent weakening of underlying soils and spallings due to excessive compressive stress, respectively. For the adequate design of joint seal, horizontal variation of joint widths (horizontal joint movements) are essential inputs. Based on long-term in-situ joint movement data of sixteen jointed concrete pavement sections in Long Term Performance Pavement Seasonal Monitoring Program (LTPP SMP), it was indicated that considerable Portion of joints showed no horizontal movements with change in temperature. This Phenomenon is called 'Joint Freezing'. Possible cause for joint freezing is that designed penetrated cracks do not occur at a joint. In this study, a model for the prediction of the ratio of freezing joints in a particular pavement sections is proposed. In addition, possible effects of joint freezing against pavement performance are addressed.

  • PDF