• Title/Summary/Keyword: In-situ measurements

Search Result 522, Processing Time 0.029 seconds

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.

Monitoring of the Sea Surface Temperature in the Saemangeum Sea Area Using the Thermal Infrared Satellite Data (열적외선 위성자료를 이용한 새만금 해역 해수표면온도 모니터렁)

  • Yoon, Suk;Ryu, Joo-Hyung;Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Seok;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.339-357
    • /
    • 2009
  • The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of 401 km$^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. The dyke construction has abruptly changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. In this study, we investigated the spatial change of SST distribution using the Landsat-5/7 and NOAA data before and after the dyke completion in the Saemangeum area. Satellite-induced SST was verified by compared with the various in situ measurements such as tower, buoy, and water sample. The correlation coefficient resulted in above 0.96 and RMSE was about 1$^{\circ}C$ in all data. 38 Landsat satellite images from 1985 to 2007 were analyzed to estimate the temporal and spatial change of SST distribution from the beginning to the completion of the Samangeum dyke's construction. The seasonal change in detailed spatial distribution of SST was measured, however, the estimation of change during the Saemangeum dyke's construction was hard to figure out owing to the various environmental conditions. Monthly averaged SST induced from NOAA data from 1998 to 2007 has been analyzed for a complement of Landsat's temporal resolution. At the inside of the dyke, the change of SST from summer to winter was large due to the relatively high temperature in summer. In this study, multi-sensor thermal remote sensing is an efficient tool for monitoring the temporal and spatial distribution of SST in coastal area.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea (평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산)

  • Lee, Sang-Hyun;Byun, Do-Seong;Choi, Byoung-Ju;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.195-204
    • /
    • 2009
  • In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.

Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types (토지이용 유형별 공간특성을 고려한 ENVI-met 모델의 현장측정자료 기반의 검증)

  • Song, Bong-Geun;Park, Kyung-Hun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.156-172
    • /
    • 2014
  • This research measures and compares on-site net radiation energy, air temperature, wind speed, and surface temperature considering various spatial characteristics with a focus on land use types in urban areas in Changwon, Southern Gyeongsangnam-do, to analyze the accuracy of an ENVI-met model, which is an analysis program of microclimate. The on-site measurement was performed for three days in a mobile measurement: two days during the daytime and one day during the nighttime. The analysis using the ENVI-met model was also performed in the same time zone as the on-site measurement. The results indicated that the ENVI-met model showed higher net radiation than the on-site measurement by approximately $300Wm^{-2}$ during the daytime whereas the latter showed higher net radiation energy by approximately $200Wm^{-2}$ during the nighttime. The temperature was found to be much higher by approximately $2-6^{\circ}C$ in the on-site measurement during both the daytime and nighttime. The on-site measurement also showed higher surface temperature than the ENVI-met by approximately $7-13^{\circ}C$. In terms of the wind speed, there was a significant difference between the results of the ENVI-met model and on-site measurement. As for the correlation between the results of the ENVI-met model and on-site measurement, the temperature showed significantly high correlation whereas the correlations for the net radiation energy, surface temperature, and wind speed were very low. These results appear to be affected by excessive or under estimation of solar and terrestrial radiation and climatic conditions of the surrounding areas and characteristics of land cover. Hence, these factors should be considered when applying these findings in urban and environment planning for improving the microclimate in urban areas.

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Assessment and Calibration of Ultrasonic Velocity Measurement for Estimating the Weathering Index of Stone Cultural Heritage (석조문화재의 풍화지수 산정을 위한 초음파속도의 평가 및 보정)

  • Lee, Young-Jun;Keehm, Young-Seuk;Lee, Min-Hui;Han, June-Hee;Kim, Min-Su
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.126-138
    • /
    • 2012
  • Ultrasonic method is widely used for the evaluation of weathering index and of degree of deterioration because it is easily applicable $in$ $situ$. The basic idea of the method is that the ultrasonic velocity decreases as a rock is being weathered. Thus, the difference of ultrasonic velocities between fresh rock and weathered rock indicates the degree of weathering. In this method, the ultrasonic velocity of fresh rock is assumed to be 5,000 m/s. However, this assumption can cause significant errors in estimating weathering index, especially in case that those rocks of the same type have a wide range of ultrasonic velocities such as in Korea. Therefore, we obtained twenty rock specimens and sixty core samples commonly used for stone cultural heritages in Korea, and measured ultrasonic velocities. From the results, we found that the ultrasonic velocities of the same rock type, granite samples range from 3,118 to 5,380 m/s, and that the estimated weathering index can be highly biased if we use the fixed value of 5,000 m/s. We created a database (DB) by combining the measurement data and reported it. We also measured ultrasonic velocities by direct and indirect methods to quantify the calibration coefficient for each sampling site. We found that the calibration coefficients vary widely from site to site (1.31-1.76). Other factors, such as operator bias and temperature did not show any significant effect on errors in ultrasonic velocity measurements. Lastly, we applied our ultrasonic velocity DB and calibration coefficients to a stone cultural heritage, Bonghwang-ri Buddha statue. Our estimation of the weathering index was 0.3, 0.1 smaller than that by conventional method. The degree of deterioration was also different, "moderately weathered", while conventional method gave "highly weathered". Since other independent studies reported that the degree of deterioration of the Buddha statue was "moderately weathered", our estimation seems to be more accurate. Thus our method can help accurately evaluate the weathering index and the conservation planning for a stone cultural heritage.

Temperature Dependence of Oxygen Diffusivity in the PVC Film on Gold Electrode Using Steady-State Rotating Disk Electrode Technique and Modulated Electrohydrodynamic Impedance Technique (정상상태 회전원판전극(RDE) 방법과 유체역학적 요동에 의한 전기화학적(EHD) 임피던스방법을 이용한 금전극표면에 형성된 PVC 피막내 산소확산계수의 온도의존성에 대한 연구)

  • Yeon Jei-Won;Pyun Su-Il;Lee Woo-Jin;Choi In-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • In the present we.k, temperature dependence of oxygen diffusivity in the polyvinyl chloride (PVC) film $D_f$ formed on gold electrode was investigated using steady-state rotating disk electrode (RDE) technique and modulated electrohydrodynamic (EHD) impedance technique. Both the diffusion rate defined as the ratio of oxygen diffusivity in the PVC film to the film thickness $D_f/\delta_f$ and the time constant $\delta_f^2/D_f$ for oxygen diffusion through the PVC film were obtained from plot of the limiting current versus disk rotation speed and from filing the EHD impedance spectra experimentally measured to those theoretically calculated on the basis of the diffusion equation for mass transport through the non-conductive and porous film, respectively. By combining measured $D_f/\delta_f$ with $\delta_f^2/D_f$, we determined $\delta_f\;and\;D_f$ at room temperature separately. As temperature increased, it appeared that the $D_f$ value measured for the PVC film-covered gold RDE was enhanced more rapidly than that $D_s$ value in the solution measured for the PVC film-free gold RDE. This means that the pores glowing with increasing temperature act as effective diffusion paths within the film. The present in-situ steady-state and modulated EHD measurements prove to be effective for determining $\delta_f\;and\;D_f$, separately and at the same time the porosity of the PVC film at temperatures below glass temperature $T_g$ of the film.