• 제목/요약/키워드: In-situ deformation

Search Result 200, Processing Time 0.053 seconds

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

Ground Subsidence Estimation in a Coastal Reclaimed Land Using JERS-1 L-band SAR Interferometry (JERS-1 L-band SAR Interferometry 를 이용한 연안매립지 지반침하 관측)

  • 김상완;이창욱;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.465-478
    • /
    • 2002
  • We measured subsidences occurred in a coastal reclaimed land, Noksan industrial complex, from May 2, 1996 to February 21, 1998, using 5 interferograms of JERS-1 L-band SAR. SAR with a spatial resolution of about 16 m can detect the two-dimensional distribution of subsidence that is difficult to be estimated from in situ measurements. Accuracy of the subsidences estimated by 2-pass DInSAR was evaluated using the measurements of Magnetic Probe Extensometer (accuracy of :${\pm}$1 mm) installed at 42 stations. DInSAR measurements were well correlated with the field measurements showing an average correlation coefficient of 0.77. The correlation coefficient was further improved to be 0.87 (with RMSE of 1.44 cm) when only highly coherenced (>0.5) pixels were used. The slope of regression line was 1.04, very close to the unit value. In short, DInSAR measurements have a good linear relation with field measurements so that we can effectively detect a subsidence in the coastal reclaimed area especially using pixels of high coherence (>0.5). The maximum accumulated subsidence was about 60 cm in the study area, while the subsidence in the northern and south western areas were less than 20 cm. The resuts show that DInSAR is extremely useful for geotechnical applications as well as observation of natural deformation.

A Simple Numerical Procedure for Assessing the Effect of Ground Improvement Around a Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형터널의 보강효과 해석을 위한 간편 수치해석법)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.98-106
    • /
    • 2008
  • When a tunnel is excavated in a rock mass of poor condition, the adjacent zone of excavation surface may be reinforced by adopting the appropriate methods such as grouting and rock bolting. The reinforced effect can be evaluated by use of various numerical approaches, where the reinforcing elements may be expressed as distinct discretizations or smeared into the equivalent material properties. In this study, a simple numerical method, which can be classified as the latter approach, was developed for the elasto-plastic analysis of a circular tunnel. If a circular tunnel in a Mohr-Coulomb rock mass is reinforced to a finite thickness, the reinforced annulus may have different material properties from the in-situ rock mass. In the proposed elasto-plastic method for assessing the reinforcing effect, Lee & Pietruszczak (2007)'s method is applied to both the reinforced annulus and the outer insitu rock mass of the fictitious tunnel, and then two results are combined by enforcing the compatibility condition. The method were verified through comparing the results with the proposed method and the commercial finite difference code FLAC. When taking the variation of deformation modulus and strength parameters in the reinforced zone into account, the distributions of stress and radial displacement were much different from those obtained with the assumption of homogeneous rock mass.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

A study on the characteristics of shallow overburden railway tunnel behavior under the existing road (기존도로하부 저토피 통과구간 철도터널 거동특성에 관한 연구)

  • Seo, Yoon-sic;Kim, Yeon-deok;Moon, Gyeong-seon;Kim, Hyeob;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1045-1058
    • /
    • 2017
  • This paper is a study on railway tunnel behavior characteristic of shallow overburden under the existing road. In order to understand the behavior characteristics of the ground deformation during tunnel excavation, a horizontal rod extensometers were installed in the passage area of the shallow overburden tunnel under the road, and the measurement and analysis were carried out. To compare the in situ measurement, three dimensional numerical analysis with ground condition and construction step was carried out using MIDAS NX. As a result of the field measurement, large preceding settlement occurred where the poor ground condition with shallow overburden excavation has been conducted. As a result of the numerical analysis, the largest settlement occurred at the shallow overburden point where the ground condition was poor. Therefore, in the shallow overburden section where the soil condition is poor and a sufficient depth can't be secured and the arching effect of the ground around the tunnel can't be expected, careful attention should be paid to the application of stiffness reinforcement measures and to minimize ground loosening.

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

Behavioral Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 거동 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.117-133
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than at the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0 kN to 196 kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

Reliability study on rolling deformation of ITO thin film on flexible substrate (유연 기판상 ITO 박막의 롤링변형에 따른 신뢰성 연구)

  • Seol, Jae-Geun;Lee, Dong-Jun;Kim, Tae-Wook;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.29-33
    • /
    • 2018
  • Flexible electronics must be stable under various deformations such as bending, folding, and rolling. The reliability of ITO (Indium Tin Oxide) film used widely as a transparent electrode for flexible electronics has been studied using rolling fatigue test and bending test. During repeated rolling deformations, the electrical resistance was in-situ measured with different number of rotation. During rolling fatigue test, the electrical resistance of ITO film was significantly increased with increasing the number of rotation. As the stress state of ITO film is different according to the relative position of ITO and substrate, the rolling fatigue test was investigated under both outer and inner bending conditions. Inner rolling fatigue test showed superior electrical stability because the crack nucleation and propagation were retarded under compressive stress state.