• Title/Summary/Keyword: In-situ chemical oxidation

Search Result 76, Processing Time 0.029 seconds

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • Kim, Seong Hyeon;Toshiaki Ohta;Gang, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

A Novel Method for Preparing of Oxoruthenates Complexes: trans-[RuO3(OH)2]2-, [RuO4]-, (n-Pr4N)+[RuO4]- and [RuO4 and Their Use as Catalytic Oxidants

  • Shoair, Abdel-Ghany F.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1525-1528
    • /
    • 2005
  • The synthesis and characterization of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O\;(C_2O_4}^{2-}$ = oxalato anoin) complex are described, and its redox properties (in buffer solution of pH = 12) have been investigated. This complex is used for in situ generation of oxoruthenates complexes which have been characterized by electronic spectroscopy. Reaction of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${S_2O_8}^{2-}$ in molar KOH generates trans-${[RuO_3(OH)_2]^{2-}/S_2O_8}^{2-}$ reagent while with excess ${BrO_3}^-$ in molar $Na_2CO_3$ generates ${[RuO_4]^-/BrO_3}^-$ reagent. Avoiding the direct use of [$RuO_4$] the organic-soluble $(n-Pr_4N)^+[RuO_4]^-$, (TPAP) has been isolated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${BrO_3}^-$ in molar carbonate and n-$Pr_4$NOH. In a mixture of $H_2O/CCl_4$ ruthenium tetraoxide can be generated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${IO_4}^-$. The catalytic activities of oxoruthenates that have been made from $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ towards the oxidation of benzyl alcohol, piperonyl alcohol, benzaldehyde and benzyl amine at room temperature have been studied.

In-line Smart Oil Sensor for Machine Condition Monitoring (기계 상태진단을 위한 인-라인형 오일 모니터링 스마트 센서)

  • Kong, H.;Ossia, C.V.;Han, H.G.;Markova, L.
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.111-121
    • /
    • 2008
  • An integrated in-line oil monitoring detector assigned for continuous in situ monitoring multiple parameters of oil performance for predicting economically optimal oil change intervals and equipment condition control is presented in this study. The detector estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical intensity of oil in three optical wavebands ("Red", "Green" and "Blue") and water content is evaluated as Relative Saturation of oil by water. The detector is able to monitor oils with low light absorption (hydraulic, transformer, turbine, compressor and etc. oils) as well as oils with rather high light absorption in visible waveband (diesel and etc. oils). In a case study that the detector is applied to a diesel engine oil, it is found that the detector provides good results on oil chemical degradation as well as soot concentration.

Manufacturing/Material Property Characterization of Polymer Nano-composites with Chemically Functionalized Carbon Nanotubes (화학적으로 기능화된 탄소나노튜브를 사용한 고분자 복합재료의 제조 및 물성 평가에 대한 연구)

  • Kim Taegoo;Goak Jeungchoon;Lee Naesung;Lee Jongwhi;Park Joohyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1534-1540
    • /
    • 2004
  • This study aims to obtain fundamental understandings involving the manufacturing processes of nano-composites with chemically surface-modified multi-walled carbon nanotubes(MWCNTs), and explore the role of functionalized MWCNTs in the epoxy/MWCNT composites. For this purpose, MWCNTs were purified by the thermo-chemical oxidation process, and incorporated into an epoxy matrix by in situ polymerization process, the surface of MWCNTs were functionalized with carboxyl functions which were demonstrated by an infrared spectroscopy. The mechanical properties of epoxy/MWCNT nano-composites were measured to investigate the role of a chemically functionalized carbon nanotubes. To improve the dispersion quality of MWCNTs in the epoxy matrix, methanol and acetone were exploited as dispersion media with sonification. The epoxy/MWCNT nano-composites with 1 or 2 wt.% addition of functionalized carbon nanotubes show an improved tensile strength and wear resistance in comparison with pure epoxy, which shows the mechanical load transfer improves through chemical bonds between epoxy and functionalized MWCNTs. The tensile strength with 7 wt.% functionalized MWCNTs increases by 28% and the wear resistance is dramatically improved by 100 times.

Effect of Iron Activators on the Persulfate Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils (다환방향족 탄화수소(PAHs) 오염토양의 과황산 산화 시 철 활성화제의 영향)

  • Choi, Jiyeon;Park, Jungdo;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.62-73
    • /
    • 2020
  • PAHs commonly found in industrial sites such as manufactured gas plants (MGP) are potentially toxic, mutagenic and carcinogenic, and thus require immediate remediation. In-situ chemical oxidation (ISCO) is known as a highly efficient technology for soil and groundwater remediation. Among the several types of oxidants utilized in ISCO, persulfate has gained significant attention in recent years. Peroxydisulfate ion (S2O82-) is a strong oxidant with very high redox potential (E0 = 2.01 V). When mixed with Fe2+, it is capable of forming the sulfate radical (SO4) that has an even higher redox potential (E0 = 2.6 V). In this study, the influence of various iron activators on the persulfate oxidation of PAHs in contaminated soils was investigated. Several iron sources such as ferrous sulfate (FeSO4), ferrous sulfide (FeS) and zero-valent iron (Fe(0)) were tested as a persulfate activator. Acenaphthene (ANE), dibenzofuran (DBF) and fluorene (FLE) were selected as model compounds because they were the dominant PAHs found in the field-contaminated soil collected from a MGP site. Oxidation kinetics of these PAHs in an artificially contaminated soil and the PAH-contaminated field soil were investigated. For all soils, Fe(0) was the most effective iron activator. The maximum PAHs removal rate in Fe(0)-mediated reactions was 92.7% for ANE, 83.0% for FLE, and 59.3% for DBF in the artificially contaminated soil, while the removal rate of total PAHs was 72.7% in the field-contaminated soil. To promote the iron activator effect, the effects of hydroxylamine as a reducing agent on reduction of Fe3+ to Fe2+, and EDTA and pyrophosphate as chelating agents on iron stabilization in persulfate oxidation were also investigated. As hydroxylamine and chelating agents (EDTA, pyrophosphate) dosage increased, the individual PAH removal rate in the artificially contaminated soil and the total PAHs removal rate in the field-contaminated soil increased.

Fabrication of ${\gamma}-Fe_2O_3$ Thin Film for Chemical Sensor Application (화학센서용 다공성 ${\gamma}-Fe_2O_3$ 박막 제조)

  • Kim, Bum-Jin;Lim, Il-Sung;Jang, Gun-Eik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.171-176
    • /
    • 1999
  • ${\gamma}-Fe_2O_3$ thin films on $Al_2O_3$ substrate were prepared by the oxidation of $Fe_3O_4$ thin films processed by PECVD(Plasma-Enhanced Chemical Vapor Deposition) technique. The phase transformation of ${\gamma}-Fe_2O_3$ thin films was mainly controlled by the substrate temperature and oxidation process of $Fe_3O_4$ phase. $Fe_3O_4$ phase was obtained at the deposition temperature of $200{\sim}300^{\circ}C$. $Fe_3O_4$ phase could be transformed into ${\gamma}-Fe_2O_3$ phase under controlled oxidation at $280{\sim}300^{\circ}C$. $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ obtained by oxidation of $Fe_3O_4$ phase had the same spinel structure and were coexisted. The oxidized ${\gamma}-Fe_2O_3$ thin film on $Al_2O_3$ substrate showed a porous island structure.

  • PDF

Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies (Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험)

  • Lee, Chung-Seop;Oh, Da-Som;Cho, Sung-Heui;Lee, Jin-Wook;Chang, Yoon-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

The In-Situ Ozone Oxidative Remediation Potential of Diesel Fuel-contaminated Soil (디젤오염토양에 대한 지중 오존산화처리 적용 가능성)

  • 유도윤;신응배;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 1999
  • This paper includes the basic experimental results performed for developing an innovative and technologically feasible process wherein gaseous ozone, a powerful oxidant. is injected directly into vadose zone by which in-situ chemical degradation of semi- or, non-volatile petroleum product such as diesel fuel is derived. As ozone gas injected continuously(50mL/min, 119.0$\pm$6.1mg/L) into soil packed columns artificially contaminated with diesel fuel(initial concentration 1,485mg-DRO/kg/soil), the removal rates at the inlet and outlet point of 14hrs-operated column are 87.9% and 100.0%, respectively. On the other hand, soil vapor extraction system showed less than 30% of removal rates of residual diesel both at the inlet and outlet samples under the same experimental conditions which confirms the limited treatability of SVE in diesel contaminated soil.

  • PDF