• Title/Summary/Keyword: In-situ XPS

Search Result 76, Processing Time 0.031 seconds

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Single Source Chemical Vapor Deposition of Epitaxial Cubic SiC Films on Si (입방형 탄화규소 박막의 적층 성장)

  • 이경원;유규상;구수진;김창균;고원용;조용국;김윤수
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 1996
  • Epitaxial cubic silicon carbide films have been deposited on carbonized Si(001) substrates using the single precursor 1, 3-disilabutane in the temperature range 900-$1000^{\circ}C$ under high vacuum conditions. The films grown were characterized by in situ RHEED, XPS, XRD, x-ray pole figure, SEM, and TEM. The results show that epitaxial cubic SiC films with smooth morphology and good crystallinity were formed in this temperature range. The single precursor 1, 3-disilabutane has been found suitable for the epitaxial growth of cubic SiC on Si(001) substrates.

  • PDF

The Plasma Modification of Polycarbonate and Polyethersulphone Substrates for Ta2O5 Thin Film Deposition (Ta2O5 박막증착에서 플라즈마 전 처리를 통한 Polycarbonate와 Polyethersulphone 기판의 표면 개질)

  • Kang, Sam-Mook;Yoon, Seok-Gyu;Jung, Won-Suk;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.38-41
    • /
    • 2006
  • Surface of PC (Polycarbonate) and PES (Polyethersulphone) treated by plasma modification with rf power from 50 W to 200 W substrates in Ar (3 sccm), $O_2$ (12 sccm) atmosphere. From the results of modified substrates in XPS (X-ray Photoelectron Spectroscopy), the ratio of oxide containing bond increased with rf power. As the rf power was 200 W, the contact angle was the lowest value of 14.09 degree. And the datum from AFM (Atomic Force Microscopy), rms roughness value of PES and PC substrates increased with rf power. We could deposit $Ta_2O_5$ with good adhesion on plasma treated PES and PC substrates using by in-situ rf magnetron sputter.

A Study on the Silicon surface and near-surface contamination by $CHF_3$/$C_2$$F_6$ RIE and its removal with thermal treatment and $O_2$ plasma exposure ($CHF_3$/$C_2$$F_6$ 반응성이온 건식식각에 의한 실리콘 표면의 오염 및 제거에 관한 연구)

  • 권광호;박형호;이수민;곽병화;김보우;권오준;성영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.31-43
    • /
    • 1993
  • Thermal behavior and $O_{2}$ plasma effects on residue and penetrated impurities formed by reactive ion etching (RIE) in CHF$_{3}$/C$_{2}$F$_{6}$ have been investigated using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) techniques. Decomposition of polymer residue film begins between 200-300.deg. C, and above 400.deg. C carbon compound as graphite mainly forms by in-situ resistive heating. It reveals that thermal decomposition of residue can be completed by rapid thermal anneal above 800.deg. C under nitrogen atmosphere and out-diffusion of penetrated impurities is observed. The residue layer has been removed with $O_{2}$ plasma exposure of etched silicon and its chemical bonding states have been changed into F-O, C-O etc.. And $O_{2}$ plasma exposure results in the decrease of penetrated impurities.

  • PDF

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF

In-situ monitoring of oxidation states of vanadium with ambient pressure XPS

  • Kim, Geonhwa;Yoon, Joonseok;Yang, Hyukjun;Lim, Hojoon;Lee, Hyungcheol;Jeong, Changkil;Yun, Hyungjoong;Jeong, Beomgyun;Ethan, Crumlin;Lee, Juhan;Ju, Honglyoul;Mun, Bongjin Simon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.125.2-125.2
    • /
    • 2015
  • The evolution of oxidation states of vanadium is monitored with ambient pressure X-ray photoemission spectroscopy. As the pressure of oxygen gas and surface temperature change, the formations of various oxidation states of vanadium are observed on the surface. Under 100mTorr of the oxygen gas pressure and 523K of sample temperature, VO2 and V2O5 are formed on the surface. The temperature-dependent resistance measurement on grown sample shows a clear metal-insulator transition near 350K. In addition, the measurement of Raman spectroscopy displays the structural change from monoclinic to rutile structures across the phase transition temperature.

  • PDF

Fabrication of the Superhydrophobic Surface Inspired from Lotus-Effect (연꽃잎을 모사한 초소수성 표면 제작)

  • Jung, Dae-Hwan;Lim, Hyun-Eui;Noh, Jeong-Hyun;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.409-414
    • /
    • 2007
  • Wettability of solid surfaces with liquids is governed by the chemical properties and the microstructure of the surfaces. We report on the preparation of liquid-repellent surfaces using surface-attached monolayers of perfluorinated polymer molecules on porous silica substrates. A covalent attachment of the polymer molecules to the substrate is achieved by generation of the polymer chains through starting a surface-initiated radical-chain polymerization of a fluorinated monomer. To this, self-assembled monolayers of azo initiators are attached to silica substrates, which are used to kick off the polymerization reaction in situ. The growth of the fluorinated polymer films and the characterization of the obtained surfaces by surface plasmon spectroscopy, XPS, and contact angle measurements is described. It is shown that perfluorinated polymer films can be grown with controlled thicknesses on flat and even on porous silica surfaces, essentially without changing the surface roughness. The combination of the low surface energy coating and the surface porosity allows generation of materials which are both water and oil repellent.

  • PDF

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Interfacial reaction and Fermi level movements of p-type GaN covered by thin Pd/Ni and Ni/Pd films

  • 김종호;김종훈;강희재;김차연;임철준;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • GaN는 직접천이형 wide band gap(3.4eV) 반도체로서 청색/자외선 발광소자 및 고출력 전자장비등에의 응용성 때문에 폭넓게 연구되고 있다. 이러한 넓은 분야의 응용을 위해서는 열 적으로 안정된 Ohmic contact을 반드시 실현되어야 한다. n-type GaN의 경우에는 GaN계면에서의 N vacancy가 n-type carrier로 작용하기 때문에 Ti, Al, 같은 금속을 접합하여 nitride를 형성함에 의해서 낮은 접촉저항을 갖는 Ohmic contact을 하기가 쉽다. 그러나 p-type의 경우에는 일 함수가 크고 n-type와 다르게 nitride가 형성되지 않는 금속이 Ohmic contact을 할 가능성이 많다. 시료는 HF(HF:H2O=1:1)에서 10분간 초음파 세척을 한 후 깨끗한 물에 충분히 헹구었다. 그런 후에 고순도 Ar 가스로 건조시켰다. Pd와 Ni은 열적 증착법(thermal evaporation)을 사용하여 p-GaN에 상온에서 증착하였다. 현 연구에서는 열처리에 의한 Pd의 clustering을 줄이기 위해서 wetting이 좋은 Ni을 Pd 증착 전과 후에 삽입하였으며, monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy)을 사용하여 열처리 전과 40$0^{\circ}C$, 52$0^{\circ}C$ 그리고 695$0^{\circ}C$에서 3분간 열처리 후의 온도에 따른 morphology 변화, 계면반응(interfacial reaction) 및 벤드 휨(band bending)을 비교 연구하였다. Nls core level peak를 사용한 band bending에서 Schottky barrier height는 Pd/Ni bi-layer 접합시 2.1eV를, Ni/Pd bi-layer의 경우에 2.01eV를 얻었으며, 이는 Pd와 Ni의 이상적인 Schottky barrier height 값 2.38eV, 2.35eV와 비교해 볼 때 매우 유사한 값임을 알 수 있다. 시료를 후열처리함에 의해 52$0^{\circ}C$까지는 barrier height는 큰 변화가 없으나, $650^{\circ}C$에서 3분 열처리 후에 0.36eV, 0.28eV 만큼 band가 더 ?을 알 수 있었다. Pd/Ni 및 Ni/Pd 접합시 $650^{\circ}C$까지 후 열 처리 과정에서 계면에서 matallic Ga은 온도에 비례하여 많은 양이 형성되어 표면으로 편석(segregation)되어지나, In-situ SAM을 이용한 depth profile을 통해서 Ni/Pd, Pd/Ni는 증착시 uniform하게 성장함을 알 수 있었으며, 후열처리 함에 의해서 점차적으로 morphology 의 변화가 일어나기 시작함을 볼 수 있었다. 이는 $650^{\circ}C$에서 열처리 한후의 ex-situ AFM을 통해서 재확인 할 수 있었다. 이상의 결과로부터 GaN에 Pd를 접합 시 심한 clustering이 형성되어 Ohoic contact에 문제가 있으나 Pd/Ni 혹은 Ni/Pd bi-layer를 사용함에 의해서 clustering의 크기를 줄일 수 있었다. Clustering의 크기는 Ni/Pd bi-layer의 경우가 작았으며, $650^{\circ}C$ 열처리 후에 barrier height는 Pd/Ni bi-layer의 경우에도 Ni의 영향을 받음을 알 수 있었다.

  • PDF