• Title/Summary/Keyword: In-plane displacement

Search Result 728, Processing Time 0.028 seconds

Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls (PC 벽체 수직접합부의 개발 및 전단성능 평가)

  • Moon, Kyo Young;Kim, Sung Jig;Lee, Kihak;Kim, Yong Nam
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

Free vibration analysis of pores functionally graded plates using new element based on Hellinger-Reissner functional

  • Majid Yaghoobi;Mohsen Sedaghatjo;Mohammad Karkon;Lazreg Hadji
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.713-728
    • /
    • 2023
  • This paper aims to investigate the free vibration analysis of FG plates, taking into account the effects of even and uneven porosity. The study employs the Hellinger-Reisner functional and obtains the element's bending stress and membrane stress fields from the analytical solution of the governing equations of the thick plate and plane problem, respectively. The displacement field serves as the second independent field. While few articles on free vibration analysis of circular plates exist, this paper investigates the free vibration of both rectangular and circular plates. After validating the proposed element, the paper investigates the effects of porosity distributions on the natural frequency of the FG porous plate. The study calculates the natural frequency of thin and thick bending plates with different aspect ratios and support conditions for various porosity and volume fraction index values. The study uses three types of porosity distributions, X, V, and O, for the uneven porosity distribution case. For O and V porosity distribution modes, porosity has a minor effect on the natural frequency for both circular and rectangular plates. However, in the case of even porosity distribution or X porosity distribution, the effect of porosity on the natural frequency of circular and rectangular plates increases with an increase in the volume fraction index.

Using a Kirschner wire as an internal splint at nasal fractures accompanied fracture of frontal process of maxilla or perpendicular plate of ethmoid (상악골 전두돌기 골절 및 사골 수직판 골절을 동반한 비골 골절에서 K 강선을 이용한 내고정)

  • Rho, Kyoung Hwan;Yoon, Eul Sik;Yoon, Byung Min;Dhong, Eun Sang
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.623-628
    • /
    • 2009
  • Purpose: In cases where nasal fractures involve frontal process of maxilla or perpendicular plate of ethmoid, 4 - 5 days of nasal packing may not provide sufficient support for avoiding displacement after packing removal. Therefore a single Kirschner - wire(K - wire) is used as an internal splint when nasal fractures involve the above two areas. Methods: Thirty five patients during the last 3 practical years were treated with a K -wire pinning according to the anatomic locations of nasal fractures. We performed a retrospective study using 13 nasal fractures out of total 35 patients. Among 13 cases, 10 patients involved frontal process of maxilla, and 3 patients were diagnosed as bilateral nasal side wall fractures accompanied with fractures of perpendicular plate of ethmoid. One patient of the last three cases had been augmented with dorsal silicone implant long before the trauma. We analyzed the anteroposterior displacement of key stone area and the width between both lateral walls by comparing immediate postoperative radiographs with 2 month follow - ups. To reduce the errors, the same measurements were taken by two different inspectors, and the mean of each inspector's measurements was compared. Patient satisfaction was analyzed using a questionnaire regarding the esthetic and functional outcomes. Results: Ten patients underwent a longitudinal K - wire fixation in submucoperiosteal plane underneath the frontal process of maxilla. And three patients underwent a transverse K - wire fixation from the one side of lateral wall to the perpendicular plate of ethmoid and to the other side of lateral wall. The mean postoperative anteroposterior displacement of the key stone area measured by two inspectors were 1.84% and 3.06%; mean narrowing of bony pyramid were 1.33% and 1.48%, respectively. Subjective satisfaction scores regarding the esthetic appearance and the maintenance of nasal shape compared with immediate post - operative state with the long term ones were not different (p>0.05). Conclusion: K - wire pinning after closed reduction is a reliable and useful method for the treatment of nasal fractures involving frontal process of maxilla or perpendicular plate of ethmoid. This is because it achieves longer intranasal support after reduction. This method also leaves conspicuous external scar, and minimal soft - tissue injury.

Stress distributions at the Periodontal ligament and displacements of the maxillary first molar under various molar angulation and rotation . Three dimensional finite element study (구치의 경사도와 회전정도가 발치공간 폐쇄시 치근막의 응력분포와 치아의 초기이동에 미치는 영향에 대한 3차원 유한요소법적 연구)

  • Kwon, Dae-Woo;Son, Woo-Sung;Yang, Hoon-Chul
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.417-428
    • /
    • 2004
  • The purpose of this study was to evaluate the stress distributions at the periodontal ligament (PDL) and displacements of the maxillary first molar when mesially directed force was applied under various molar angulations and rotations. A three dimensional finite element model of the maxiilary first molar and its periodontal ligament was made Upright position, mesially angulated position by $20^{\circ}$ and distally angulated position of the same degree were simulated to investigate the effect of molar angulation. An anteriorly directed force of 200g countertipping moment of 1,800gm-mm (9:1 moment/force ratio) and counterrotation moment of 1,000gm-mm (5:1 moment/force ratio) were applied in each situation. To evaluate the effect of molar rotation on the stress distribution, mesial-in rotation by $20^{\circ}$ and the same amount of distal-in rotation were simulated. The same force and moments were applied in each situation. The results were as follows: In all situations, there was no significant difference in mesially directed tooth displacement Also, any differences in stress distributions could not be found, in other words. there were no different mesial movements. Stress distributions and tooth displacement of the $20^{\circ}$ mesially angulated situation were very similar with those of the $20^{\circ}$ distal-in rotated situation. The same phenomenon was obserned between the $20^{\circ}$ distally angulated situation and $20^{\circ}$ mesial-in rotated situation. When the tooth was mesially angulated, or distal-in rotated, mesially directed force made the tooth rotate in the coronal plane. with its roots moving buccally, and its crown moving lingually. When the tooth was distally angulated, or mesial-in rotated, mesially directed force made the tooth rotate in the coronal plane, with its roots moving lingually and its crown moving buccally. When force is applied to au angulated or rotated molar, the orthodontist should understand that additional torque control is needed to prevent unwanted tooth rotation in the coronal plane.

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.

A Study on Stiffness-based Optimal Design of Tall Plane Frameworks using Composite Member (합성부재를 이용한 고층평면골조의 강성최적설계에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.77-84
    • /
    • 2004
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for tall frameworks using composit member subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of tall frameworks is established and approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing techniqe of composite member is developed. Two types of 50 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Feedback Analysis for Tunnel Safety using displacements measured during the tunnel excavation (터널굴착에 의한 변위계측값을 활용한 역해석 기법 연구)

  • Park, Si-Hyun;Song, Won-Gen;Oh, Young-Seok;Shin, Yong-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.199-204
    • /
    • 2007
  • This research aimed at to develop a quantitative assesment technique which uses the measured displacements at the excavated plane during tunnel construction. Tunnel structure has a feature with long extents comparing to the excavated section so that the tunnel safety assesment is more effective by using the measured data of displacements. Tunnel structures show different structural behaviors due to the mechanical characteristics of ground and supports themselves, excavation methods and construction methods of supports, etc. From this point of view, it has very important meanings on the practical aspects that the measured data from the construction cite represent the features of the interaction effects between ground and supports as they are. In this study, both the stress state and the properties of surrounding ground are analyzed by newly incorporated feedback analysis technique which can use the measured displacements directly. Then, the stress state and the properties of ground will be used to obtain the strain distribution of surrounding ground. Finally the tunnel safety can be assessed by comparing the estimated strain through the analysis to the allowable strain of ground quantitatively.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory

  • Shi, G.;Lam, K.Y.;Tay, T.E.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.623-637
    • /
    • 1999
  • This paper presents a four-noded quadrilateral $C^0$ strain plate element for the analysis of thick laminated composite plates. The element formulation is based on: 1) the third-order shear deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and rotations along element boundaries. Unlike the existing displacement-type composite plate elements based on the third-order theory, which rely on the $C^1$-continuity formulation, the present plate element is of $C^0$-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order expansion of the in-plane displacements through the thickness, the resulting theory and hence elements do not need shear correction factors. The explicit element stiffness matrix makes the present element more computationally efficient than the composite plate elements using numerical integration for the analysis of thick layered composite plates.