• Title/Summary/Keyword: In-plane and Out-of-plane loads

Search Result 137, Processing Time 0.024 seconds

Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

Coupled electro-elastic analysis of functionally graded piezoelectric material plates

  • Wu, Chih-Ping;Ding, Shuang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.781-806
    • /
    • 2015
  • A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit surface conditions and under electro-mechanical loads. In this formulation, the material properties of the plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric potential, and normal electric displacement components. The relevant orders used for expanding these variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken. The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions with the exact 3D piezoelectricity ones available in the literature.

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Numerical Analysis of a Crack in the Vicinity of an Inclusion (함유체에 인접한 크랙에 관한 수치해석)

  • 이정기;라원석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.465-474
    • /
    • 1999
  • A recently developed numerical method based on a volume integral formulation is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and finite element method using ANSYS. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

  • PDF

Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples

  • Saboori, Behnam;Torabi, A.R.;Berto, F.;Razavi, S.M.J.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.699-706
    • /
    • 2018
  • In the present contribution, fracture resistance of U-notched GPPS members under mixed mode I/III loading conditions is assessed by using the Averaged Strain Energy Density (ASED) criterion. This criterion has been founded based on the ASED parameter averaged over a well-defined control volume embracing the notch edge. The validation of the theoretical criterion predictions is evaluated through comparing with the results of a series of mixed mode I/III fracture tests conducted on rectangular-shaped GPPS specimens weakened by a single edge U-notch. A recently developed apparatus for mixed mode I/III fracture experiments is employed for measuring the fracture loads of the specimens. The test samples are fabricated with different notch tip radii with the aim of evaluating the influence of this major feature of the U-notched components on the mixed mode I/III fracture behavior. It is shown that the onset of brittle fracture in U-notched GPPS specimens under various combinations of tension and out-of-plane shear can well be predicted by means of the ASED criterion.

Effect of flexure-extension coupling on the elastic instability of a composite laminate plate

  • H. Mataich;A. El Amrani;J. El Mekkaoui;B. El Amrani
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.391-401
    • /
    • 2024
  • The present study focuses on the effect of extension-bending coupling on the elastic stability (buckling) of laminated composite plates. These plates will be loaded under uni-axial or bi-axial in-plane mechanical loads, especially in the orthotropic or anti-symmetric cross-angle cases. The main objective is to find a limit where we can approximate the elastic stability behavior of angularly crossed anti-symmetric plates by the simple behavior of specially orthotropic plates. The contribution of my present study is to predict the explicit effect of extension-flexion coupling on the elastic stability of this type of panel. Critically, a parametric study is carried out, involving the search for the critical buckling load as a function of deformation mode, aspect ratio, plate anisotropy ratio and finally the study of the effect of lamination angle and number of layers on the contribution of extension-flexure coupling in terms of plate buckling stability. We use first-order shear deformation theory (FSDT) with a correction factor of 5/6. Simply supported conditions along the four boundaries are adopted where we can develop closed-form analytical solutions obtained by a Navier development.

Analytical study of slant end-plate connection subjected to elevated temperatures

  • Zahmatkesh, F.;Osman, M.H.;Talebi, E.;Kueh, A.B.H.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.47-67
    • /
    • 2014
  • Due to thermal expansion, the structural behaviour of beams in steel structures subjected to temperature increase will be affected. This may result in the failure of the structural members or connection due to extra internal force in the beam induced by the thermal increase. A method to release some of the thermally generated internal force in the members is to allow for some movements at the end supports of the member. This can be achieved by making the plane of the end-plate of the connection slanted instead of vertical as in conventional design. The present paper discusses the mechanical behaviour of beams with bolted slant end-plate connection under symmetrical gravity loads, subjected to temperature increase. Analyses have been carried out to investigate the reduction in internal force with various angles of slanting, friction factor at the surface of the connection, and allowable temperature increase in the beam. The main conclusion is that higher thermal increase is tolerable when slanting connection is used, which means the risk of failure of structures can be reduced.

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF