• Title/Summary/Keyword: In-plane Wave

Search Result 812, Processing Time 0.025 seconds

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

입사각에 따른 흡음재의 반사 계수 측정 방법론 및 오차에 대한 고찰 (Measurement of Reflection Coefficient of Sound Absorbent Material with Respect to Angle of Incidence and Its Associated Errors)

  • 이수열;김상렬;김양한
    • 소음진동
    • /
    • 제4권3호
    • /
    • pp.295-305
    • /
    • 1994
  • The reflection coefficient of a material at oblique incidence is measured in a free field. The sound pressure distributions are measured at discrete points on two measurement lines and then decomposed into plane wave components by using spatial Fourier transform. The inciedent and reflected plane wave components are obtained from a set of "decomposition equations" of which uses the plane wave propagation theory. Numerical simulations and experiments have been performed to see the effect of finite size of measurement area. To reduce this effect, a window fuction has been performed to see the effects of finite size of mesurement area. To reduce this effect, a window function has been proposed and its effect on the measurement of sound absorbing material property has been studied as well. The reflection coefficient obtained by this method is compared with those obtained from other methods; 2-microphone method in a duct and an expirical equation of which determines the characteristic impedance .rho.c and propagation constant k of a material from flow resistance information.formation.

  • PDF

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen;Kaur, Iqbal
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.191-218
    • /
    • 2019
  • The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.

평면파에 노출된 인체 두부의 전력흡수 해석 (A Study of Power Absorption in Human Head Exposed to Plane Wave)

  • 이애경;조광윤;이혁재
    • 한국전자파학회논문지
    • /
    • 제8권6호
    • /
    • pp.665-680
    • /
    • 1997
  • 본 논문에서는 350 MHz와 900 MHz 평면파에 노출된 다양한 모델의 인체 두부 내 비흡수율(specific abs sorption rate, SAR)의 분포를 해석하였다. 해석 방법은 유한차분시간영역(finite-difference time-domain, FDTD) 방법이며, 인체 두부 모델로서 균질 매질의 구형모델, 균질의 실질적인 형태를 갖는 모텔 그리고 실질적인 형태를 갖는 비균질 모델이 사용된다. 입사 평면파의 편파는 인체 길이방향과 일치하며, 진행방향은 뒤에서 암으로, 그리고 앞에서 뒤로 향하는 두 가지 경우를 다룬다. 얻어진 연구결과는 다음과 같다. 1) 세 가지 모델의 평균 SAR은 비슷하나 국부 SAR은 큰 차이가 있다. 2) 주파수가 900 MHz보다 두부의 공진이 일어나는 대역인 350 MHz에서 복사전력이 더 깊이 침투한다. 3) 후방입사 평변파의 경우에는 두부가 아닌 목 부근에서 "hot spot"이 일어난다. 4) 전방입사 평면파의 경우에는 900 MHz에서는 코, 350 MHz의 경우에는 입술 위와 턱 부분에 "hot spot"이 나타난다.

  • PDF

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.

Reflection of plane waves from the boundary of a thermo-magneto-electroelastic solid half space

  • Singh, Baljeet;Singh, Aarti
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.143-159
    • /
    • 2021
  • The theory of generalized thermo-magneto-electroelasticity is employed to obtain the plane wave solutions in an unbounded, homogeneous and transversely isotropic medium. Reflection phenomena of plane waves is considered at a stress free and thermally insulated surface. For incidence of a plane wave, the expressions of reflection coefficients and energy ratios for reflected waves are derived. To explore the characteristics of reflection coefficients and energy ratios, a quantitative example is set up. The half-space of the thermo-magneto-electroelastic medium is assumed to be made out of lithium niobate. The dependence of reflection coefficients and energy ratios on the angle of incidence is illustrated graphically for different values of electric, magnetic and thermal parameters.

Observation of Strong In-plane End Vibration of a Cylindrical Shell

  • 길현권
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.183-183
    • /
    • 2002
  • In this paper, the strong in-plane vibration has been experimentally observed at the end of a finite cylindrical shell. The strong in-plane vibration was generated by the evanescent wave field, which was excited along about half the length of the shell. The evanescent waves were generated due to mode conversion of elastic waves at the ends of the cylindrical shells.

Focal Plane Irradiance from MCF in Millimeter Wave Systems

  • Jong Gil Lee
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.529-534
    • /
    • 2004
  • 밀리미터파는 안개 또는 연기등에 의한 시계불량 환경에서의 고해상도 거리 및 영상정보 획득에 사용될수 있으며 광대역 통신에서도 활용되고 있다. 그러나 밀리미터파 시스템의 성능평가를 위해서는 밀리미터파 전파에 관한 이론 및 실험적인 고찰을 필요로 한다. 밀리미터파의 강도변화 및 MCF는 대기현상이 밀리미터파 전파에 미치는 영향을 표시한다. 본 논문에서는 QOM 기법을 이용하여 기상자료에 의하여 얻어질수 있는 MCF로부터 안테나 초점평면에서의 강도분포를 효율적으로 구할수 있는 실질적인 방법을 제안하였다.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

독립, 비독립 음원이 동시에 존재할 경우 선형 마이크로폰 어레이를 이용한 소음원 탐지 방법 (Indentification of Coherent/Incoherent Noise Sources Using A Microphone Line Array)

  • 김시문;김양한
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.835-842
    • /
    • 1996
  • To identify the locations and strengths of acoustic sources, one may use a microphone line array. Apparent advantage of the source identification method utilizing a line array is that it requires less measurement points than intensity method and holography. This method is based on the information of magnitude and phase difference between pressure signals at each microphone. Since those differences are dependent on the source model, we have to assume them such as plane, monopole, etc. In this paper the conventional source identification methods such as beamforming method and MUSIC method are briefly reviewed by modeling a source as plane and spherical wave, then a modified method is introduced. This can be applied to sound field which may by either coherent or incoherent. Typical simulations and experiment are performed to confirm this identification method.

  • PDF