• Title/Summary/Keyword: In-network Caching

Search Result 170, Processing Time 0.022 seconds

Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing

  • Hwan Chang;Jong Ho Park;Ju Ho Park;Kil To Chong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1040-1045
    • /
    • 2002
  • This paper focuses on a hash-based, distributed Wet caching network that eliminates inter-cache communication. An agent program on cache servers, a mapping program on the DNS server, and other components comprised in a distributed Web caching network were modified and developed to implement a so-called "consistent" hashing. Also, a dynamic load balancing algorithm is proposed to address the load-balancing problem that is a key performance issue on distributed architectures. This algorithm effectively balances the load among cache servers by distributing the calculated amount of mapping items that have higher popularity than others. Therefore, this developed network can resolve the imbalanced load that is caused by a variable page popularity, a non-uniform distribution of a hash-based mapping, and a variation of cache servers.

An Efficient Cooperative Web Caching Scheme (효율적인 협동적 웹캐슁 기법)

  • Shin, Yong-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.785-794
    • /
    • 2006
  • Nowadays, Internet is used worldwide and network traffic is increasing dramatically. Much of Internet traffic is due to the web applications. And I propose a new cooperative web caching scheme, called DCOORD which tries to minimize the overall cost of Web caching. DCOORD reduces the communication cost by coordinating the objects which are cached at each cache server. In this paper, I compare the Performance of DCOORD with two well-known cooperative Web caching schemes, ICP and CARP, using trace driven simulation. In order to reflect the cost factor in the network communication, I used the CSR(Cost-Saving Ratio) as our performance metric, instead of the traditional hit ratio. The performance evaluations show that DCOORD is more cost effective than ICP and CARP.

Numerical Analysis of Caching Performance in Content Centric Networks Using Markov Chain (마코프체인을 이용한 콘텐츠 중심 네트워크의 캐싱 성능 분석)

  • Yang, Won Seok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.224-230
    • /
    • 2016
  • Recently, CCN(Content Centric Network) has been extensively interested in the literature to transfer data traffic efficiently according to the rapid growth of multimedia services on the Internet. CCN is a new networking paradigm to deliver contents efficiently based on the named content not the named or addressed host. This paper presents a mathematical approach for analyzing CCN-caching systems with two routers. Considering the stochastic characteristics of communication networks, the caching system is modeled as a two dimensional Markov chain. This paper analyzes the structural feature of the transition rate matrix in the Markov chain and presents a numerical solution for the CCN-caching performance of the two router system. In addition, various numerical examples are presented.

Community Model for Smart TV over the Top Services

  • Pandey, Suman;Won, Young Joon;Choi, Mi-Jung;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.577-590
    • /
    • 2016
  • We studied the current state-of-the-art of Smart TV, the challenges and the drawbacks. Mainly we discussed the lack of end-to-end solution. We then illustrated the differences between Smart TV and IPTV from network service provider point of view. Unlike IPTV, viewer of Smart TV's over-the-top (OTT) services could be global, such as foreign nationals in a country or viewers having special viewing preferences. Those viewers are sparsely distributed. The existing TV service deployment models over Internet are not suitable for such viewers as they are based on content popularity, hence we propose a community based service deployment methodology with proactive content caching on rendezvous points (RPs). In our proposal, RPs are intermediate nodes responsible for caching routing and decision making. The viewer's community formation is based on geographical locations and similarity of their interests. The idea of using context information to do proactive caching is itself not new, but we combined this with "in network caching" mechanism of content centric network (CCN) architecture. We gauge the performance improvement achieved by a community model. The result shows that when the total numbers of requests are same; our model can have significantly better performance, especially for sparsely distributed communities.

Neighbor Caching for P2P Applications in MUlti-hop Wireless Ad Hoc Networks (멀티 홉 무선 애드혹 네트워크에서 P2P 응용을 위한 이웃 캐싱)

  • 조준호;오승택;김재명;이형호;이준원
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.631-640
    • /
    • 2003
  • Because of multi-hop wireless communication, P2P applications in ad hoc networks suffer poor performance. We Propose neighbor caching strategy to overcome this shortcoming and show it is more efficient than self caching that nodes store data in theirs own cache individually. A node can extend its caching storage instantaneously with neighbor caching by borrowing the storage from idle neighbors, so overcome multi-hop wireless communications with data source long distance away from itself. We also present the ranking based prediction that selects the most appropriate neighbor which data can be stored in. The node that uses the ranking based prediction can select the neighbor that has high possibility to keep data for a long time and avoid caching the low ranked data. Therefore the ranking based prediction improves the throughput of neighbor caching. In the simulation results, we observe that neighbor caching has better performance, as large as network size, as long as idle time, and as small as cache size. We also show the ranking based prediction is an adaptive algorithm that adjusts times of data movement into the neighbor, so makes neighbor caching flexible according to the idleness of nodes

Wireless Caching Techniques Based on Content Popularity for Network Resource Efficiency and Quality of Experience Improvement (네트워크 자원효율 및 QoE 향상을 위한 콘텐츠 인기도 기반 무선 캐싱 기술)

  • Kim, Geun-Uk;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1498-1507
    • /
    • 2017
  • According to recent report, global mobile data traffic is expected to increase by 11 times from 2016 to 2020. Moreover, this growth is expected to be driven mainly by mobile video traffic which is expected to account for about 70% of the total mobile data traffic. To cope with enormous mobile traffic, we need to understand video traffic's characteristic. Recently, the repetitive requests of some popular content such as popular YouTube videos cause a enormous network traffic overheads. If we constitute a network with the nodes capable of content caching based on the content popularity, we can reduce the network overheads by using the cached content for every request. Through device-to-device, multicast, and helpers, the video throughput can improve about 1.5~2 times and prefix caching reduces the playback delay by about 0.2~0.5 times than the conventional method. In this paper, we introduce some recent work on content popularity-based caching techniques in wireless networks.

A Study on Secure Cooperative Caching Technique in Wireless Ad-hoc Network (Wireless Ad-hoc Network에서 보안 협력 캐싱 기법에 관한 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • Node which plays the role of cache server does not exist in the wireless ad-hoc network consisting of only mobile nodes. Even if it exists, it is difficult to provide cache services due to the movement of nodes. Therefore, the cooperative cache technique is necessary in order to improve the efficiency of information access by reducing data access time and use of bandwidth in the wireless ad-hoc network. In this paper, the whole network is divided into zones which don't overlap and master node of each zone is elected. General node of each zone has ZICT and manages cache data to cooperative cache and gateway node use NZCT to manage cache information of neighbor zone. We proposed security structure which can accomplish send and receive in the only node issued id key in the elected master node in order to prepare for cache consistent attack which is vulnerability of distributed caching techniques. The performance of the proposed method in this paper could confirm the excellent performance through comparative experiments of GCC and GC techniques.

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

Enhancing Location Privacy through P2P Network and Caching in Anonymizer

  • Liu, Peiqian;Xie, Shangchen;Shen, Zihao;Wang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1653-1670
    • /
    • 2022
  • The fear that location privacy may be compromised greatly hinders the development of location-based service. Accordingly, some schemes based on the distributed architecture in peer-to-peer network for location privacy protection are proposed. Most of them assume that mobile terminals are mutually trusted, but this does not conform to realistic scenes, and they cannot make requirements for the level of location privacy protection. Therefore, this paper proposes a scheme for location attribute-based security authentication and private sharing data group, so that they trust each other in peer-to-peer network and the trusted but curious mobile terminal cannot access the initiator's query request. A new identifier is designed to allow mobile terminals to customize the protection strength. In addition, the caching mechanism is introduced considering the cache capacity, and a cache replacement policy based on deep reinforcement learning is proposed to reduce communications with location-based service server for achieving location privacy protection. Experiments show the effectiveness and efficiency of the proposed scheme.

Cache-Filter: A Cache Permission Policy for Information-Centric Networking

  • Feng, Bohao;Zhou, Huachun;Zhang, Mingchuan;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4912-4933
    • /
    • 2015
  • Information Centric Networking (ICN) has recently attracted great attention. It names the content decoupling from the location and introduces network caching, making the content to be cached anywhere within the network. The benefits of such design are obvious, however, many challenges still need to be solved. Among them, the local caching policy is widely discussed and it can be further divided into two parts, namely the cache permission policy and the cache replacement policy. The former is used to decide whether an incoming content should be cached while the latter is used to evict a cached content if required. The Internet is a user-oriented network and popular contents always have much more requests than unpopular ones. Caching such popular contents closer to the user's location can improve the network performance, and consequently, the local caching policy is required to identify popular contents. However, considering the line speed requirement of ICN routers, the local caching policy whose complexity is larger than O(1) cannot be applied. In terms of the replacement policy, Least Recently Used (LRU) is selected as the default one for ICN because of its low complexity, although its ability to identify the popular content is poor. Hence, the identification of popular contents should be completed by the cache permission policy. In this paper, a cache permission policy called Cache-Filter, whose complexity is O(1), is proposed, aiming to store popular contents closer to users. Cache-Filter takes the content popularity into account and achieves the goal through the collaboration of on-path nodes. Extensive simulations are conducted to evaluate the performance of Cache-Filter. Leave Copy Down (LCD), Move Copy Down (MCD), Betw, ProbCache, ProbCache+, Prob(p) and Probabilistic Caching with Secondary List (PCSL) are also implemented for comparison. The results show that Cache-Filter performs well. For example, in terms of the distance to access to contents, compared with Leave Copy Everywhere (LCE) used by Named Data Networking (NDN) as the permission policy, Cache-Filter saves over 17% number of hops.