• Title/Summary/Keyword: In-motion alignment

Search Result 162, Processing Time 0.029 seconds

Performance Analysis on the Initial Alignment of Laser Inertial Navigation System (레이저 관성항법장치 초기정렬 성능 분석)

  • Kim, Hyun-Seok;Kim, Cheon-Joong;Lee, Tae-Gyoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.622-635
    • /
    • 2009
  • Laser Inertial Navigation System(LINS) consists of Ring Laser Gyroscopes(RLG) and accelerometers. RLG has a lock-in region in which there is zero output for input angular rates less than about 0.1deg/sec. The lock-in region is generated by the imperfect mirrors in RLG. To avoid the lock-in region, a sinusoidal motion called dither motion is applied on RLG. Therefore this dither motion is measured by RLG/accelerometer even if at a stop state. In this situation, the performance on the initial alignment of LINS can be degraded. In this paper, we analyze the performance on the initial alignment of LINS theoretically and experimentally. Analysis results include how dither motion, the pre-filter and the corner frequency in alignment loop affects the performance on the initial alignment of LINS.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

In - Motion Alignment Method for a Low - cost IMU based GPS/INS System

  • Kim, Jeong-Won;Oh, Snag-Heon;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.990-994
    • /
    • 2003
  • When the low cost IMU is used, the result of the stationary self alignment is not suitable for navigation. In this paper, an in-motion alignment method is proposed to obtain an accurate initial attitude of a low cost IMU based GPS/INS integration system. To design Kalman filter for alignment, large heading error model is introduced. And then Kalman filter is designed to estimate initial attitude error as the indirect feedback filter. In order to assess performance of the alignment method, computer simulations are carried out. The simulation results show that initial attitude error rapidly reduces.

  • PDF

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

Performance Analysis in Disturbance on Initial Alignment of Laser Inertial Navigation System Using Unscented Kalman Filter (UKF를 적용한 레이저 관성항법장치의 외란에 대한 초기정렬 성능분석)

  • Oh, Juhyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.537-543
    • /
    • 2014
  • RLG(Ring Laser Gyroscope) is a main device of LINS(Laser Inertial Navigation System). RLG has the lock-in region in which there is no output signal. To alleviate the lock-in problem, a mechanical oscillation, the dither motion, is applied on RLG. A LPF(Low Pass Filter) is usually used on the output of RLG and accelerometer to remove the noise that is made by the dither motion. When the LINS is induced the disturbance during the initial alignment, it takes more time on alignment due to the use of the LPF and a fixed gain controller. In this paper, an initial alignment using UKF(Unscented Kalman Filter) is designed and analysed. Analysis include comparison between conventional initial alignment loop using fixed gain type controller and proposed initial alignment using UKF. Moreover, Disturbance inducing test results are demonstrated.

Self-Alignment/Navigation Performance Analysis in the Accelerometer Resonance State Generated by Dither Motion of Ring Laser Gyroscope in Laser Inertial Navigation System (레이저 관성항법장치에서 링레이저 자이로 디더 운동에 의한 가속도계 공진이 자체 정렬/항법 성능에 미치는 영향 분석)

  • Kim, Cheonjoong;Lim, Kyungah;Kim, Seonah
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.577-590
    • /
    • 2021
  • In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less

Development of Thin and Parallel XYθ Alignment Stage (박형 병렬구조 XYθ 정렬 스테이지 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.74-79
    • /
    • 2011
  • Alignment systems with multi-axis motions are applied to determine vertical arrangement of multilayer assembly such as LCD, PDP, and MLCC. This study reports the development of XY${\theta}$ alignment stage which is designed as thin-type structure and parallel actuations. The thin-type parallel XY${\theta}$ alignment stage is maintained below $1{\mu}m$ in repeatability error. The squareness and straightness also allow precise motion for the alignment by the developed stage. The measured error is ${\pm}6.25{\mu}m$ in the alignment experiment by the vision system on the parallel XY${\theta}$ alignment stage.

Design of transfer alignment algorithm in ship of horizontal axis attitude motion (수평축 자세운동이 있는 배에서의 전달정렬 알고리즘 설계)

  • Song, Ki-Won;Jeon, Chang-Bae;Kim, Hyun-Baek;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.672-675
    • /
    • 1996
  • This paper presents algorithm including Kalman filter for transfer alignment of velocity and quaternion matching method, when master inertial navigation system is a gimbled type and slave inertial navigation system is a strapdown type on a cruising ship which is naturally in motion of horizontal axis attitude. And relative attitudes are considered on a measurement equation for quaternion matching between master INS and slave INS.

  • PDF