• Title/Summary/Keyword: In-feed Grinding

Search Result 131, Processing Time 0.026 seconds

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

Structural Characteristic Analysis of a High-precision Centerless Grinding Machine with a Concrete-filled Bed

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a structural characteristic analysis and evaluation were carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffness values of the centerless grinding machine were estimated based on the relative displacements between the GW and RW caused by grinding forces. The simulated results illustrated that a concrete-filled bed considerably improved the structural stiffness and accuracy of a high-precision centerless grinding machine.

The Side-Cut Grinding by the Electrodeposited CBN Wheel of a Hemispheric Type (전착 CBN 반구형 숫돌에 의한 측면 연삭가공)

  • 서영일;김창수;이종찬;정선환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.38-42
    • /
    • 1995
  • In this paper, a theoretical analysis is presented on the mechanics for the side-cut grinding by electrodeposited CBN wheel of a hemispheric type. Each of the grinding force components is calculated by using the geometrical model. It is also presented that experimental results show grinding forces for grinding variable such as wheel speed, feed speed,depth of cut, and grinding wheel positions. The experimental results are found to be in good agreement with those predicted by the analytcal calculation.

  • PDF

Mechanics of the Grinding by Hemispheric Type Electroplated CBN Wheel (반구형 전착 CBN 휠에 의한 연삭가공의 연삭력 해석)

  • Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan;Jung, Sun-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a theoretical analysis is presented on the mechanics of the grinding by hemispheric type electroplated CBN wheel. The grinding forces acting on a single grain were calculated from its geometry by assuming the abrasive grain is spherical. Then. the total grinding forces were obtained by estimating the number of acting abrasive grains and the area of contact. The model includes the grinding variables such as wheel speed. feed speed. depth of cut, and grinding wheel positions. Experiments were also carried out to compare with the analytical results. The experimental results were found to be in good agreement with the analytical ones.

  • PDF

Grinding Characteristic of Advanced Ceramics (파인세라믹의 연삭가공특성)

  • Jung, Yoon-Gyo;Kang, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 1990
  • Advanced ceramics have some excellent properities as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, some experiments are carried out to find the basic grinding characteristic of advanced ceramics. Representative advanced ceramics, such as AL/sub 2/ O/sub 3/, ZrO/sub 2/, SiC and Si/sub 3/N/sub 4/and ground with diamond wheels. Special attention is paid to comparison between the conventional and creep feed grinding. Results obtained in this study provide some useful informations to attain the high efficiency grinding of advanced ceramics.

  • PDF

Form grinding characteristics of Sr ferrite (Sr 페라이트의 총형연삭특성)

  • 김성청;이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions in form grinding of Sr-ferrite with the electro-plated diamond wheel. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the best at the peripheral wheel speed of 1700 m/min. (2) In the case of the depth of cut larger than 0.4mm, crack layers is induced in the ground surface, and the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) Whe the depth of cut exceeds 0.6mm, the wheel life becomes extremely severe due to the large chipping and brack- age in the diamond grains. However, at the depth of cut .leq. 0.05mm, the diamond grain shows abrasive wear. (4) The decrease of flexural strength and the increase of surface roughness is in proportion to the increase of the feed rate. (5) Most effective nozzle setting angles with various delivery conditions of the grinding fluid, such as nozzle position .PHI. , flow rate Q, etc., were made clear.

  • PDF

Effects of Processed Barley on Growth Performance and Ileal Digestibility of Growing Pigs

  • Chu, K.S.;Kim, J.H.;Chae, B.J.;Chung, Y.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.249-254
    • /
    • 1998
  • Two experiments were conducted to evaluate the effects of processing of barley on the growth performance and ileal and fecal digestibility of growing pigs. In Exp. 1, a total of 20 cannulated pigs (10.80 kg BW) were allotted to four treatments. Treatments were coarse ground barley as a control (CON), finely ground barley (FINE), extruded barley (EXT) and enzyme supplemented coarse ground barley (ENZ). In Exp. 2, a total of 100 growing pigs (36.50 kg BW) were allocated to the same treatments in completely randomized block design based on sex and body weight. In the first trial, pigs fed extruded barley showed significantly higher crude protein digestibility over pigs fed finely ground barley (p < 0.05). Pigs fed finely ground barley generally showed lower nutrients digestibility. Extrusion and ${\beta}$-glucanase supplementation showed a trend to improve nutrients digestibility. However, fine grinding rather reduced nutrients digestibility. The similar trend was found in the digestibility of essential amino acids. Fine grinding of barley significantly reduced amino acids digestibility. Extrusion and enzyme supplementation were found to improve amino acids digestibility of barley in growing pigs. In the growth trial, pigs fed extruded barley grew significantly faster than any other processed barley fed pigs. And extrusion of barley significantly improved feed/gain of pigs (p < 0.05). Fine grinding of barley and enzyme supplementation did not improve growth performance of pigs. In conclusion, fine grinding and enzyme supplementation does not appear to be an economical feed processing for growing pigs when barley is employed in the diets, while extrusion can be recommended as an effective feed processing technique for barley.

Residual Stress Distribution according to Working Conditions in Grinding Operation (연삭가공시 연삭조건에 따른 잔류응력 분포에 관한 연구)

  • Cheong, Chae-Cheon;Cha, Il-Nam;Kim, Gyung-Nyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.23-28
    • /
    • 1990
  • This study is to investigate the magnitude, direction and distribution of residual stresses in surface ground plate according to working conditions. The specimens were made of structural carbon steel and were machined in various grinding conditions. These were divided in two groups; heat-treated materials and non-heat-treated materials. In each working condition, let the ground specimen generate displacements using deflection-etching techniques. At the same time, these displacements were precisely measured with electronic micrometer. Through the relation formula between the plane stress and strain, which was derived using these measured data, the values of residual stress are calculated, and the results are analyzed. These results are as follows : 1. According to the working conditions in this experiment, it can be seen that the distribution of residual stress generally had same trend and the maximum residual stress remained in 20~30 ((${\mu}m$) beneath the surface. 2. It is observed that compressive residual stress changes into tensile stress in 5~20 (${\mu}m$) beneath the surface. It is suggested that such phenomenon is originated from the friction effect in grinding process. 3. As the hardness increases by the heat treatment, residual stress increases. 4. As the fatigue strength increases by the compressive residual stress, it is desirable that the dowm feed and table feed reduce. 5. It can be seen that the more great the down feed and table feed increase, the more close the changing point, where the stress changed from compressive to tensile, is colse to the surface. This is due to the resultant effects of the grinding temperature and resistence are larger than the effect of the friction.

  • PDF

Evaluation of Grinding Characteristics in Radial Direction of Silicon Wafer (실리콘 웨이퍼의 반경 방향에 따른 연삭 특성 평가)

  • Kim, Sang-Chul;Lee, Sang-Jik;Jeong, Hae-Do;Lee, Seok-Woo;Choi, Heon-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.980-986
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive, the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, Ist, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the effect of the wheel path density and relative velocity on the characteristic of ground wafer in in-feed grinding with cup-wheel. It seems that the variation of the parameters in radial direction of wafer results in the non-uniform surface quality over the wafer. So, in this paper, the geometric analysis on grinding process is carried out, and then, the effect of the parameters on wafer surface quality is evaluated

  • PDF

Grinding Characteristic of ZrO$_2$ Ceramics Ferrule (지르코니아 세라믹스 페룰의 연삭 특성)

  • 이석우;최영재;김기환;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1911-1915
    • /
    • 2003
  • Today optical communication industry is developed; demand of optical communication part is increased. ZrO$_2$ ceramic ferrule is very significant part which determines transmission efficiency and quality of information in the optical communication part by connector of optical fibers. Being different from metal grinding, material removal through brittle fracture plays an important role in ZrO$_2$ ceramic grinding. Most of ZrO$_2$ ceramic ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter are very important. The co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ZrO$_2$ ceramic ferrule is affected by grinding conditions, and equipment. In this study, surface integrity of workpiece according to such as a change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ZrO$_2$ ceramic ferrule from many experiments. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF