• Title/Summary/Keyword: In-feed Grinding

Search Result 131, Processing Time 0.021 seconds

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

Green and Hard Machining Characteristics of Zirconia-alumina Composites for Dental Implant (치과 임플란트용 지르코니아-알루미나 복합체의 생 가공 및 경 가공 특성)

  • Lim, Hyung-Bong;Tang, Dongxu;Lee, Ki-Ju;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.152-159
    • /
    • 2011
  • The green and hard machining characteristics of dental ceramics are of great interest to dental industry. The green bodies of TZP/$Al_2O_3$ composites were prepared by the cold isostatic pressing, and machined on the CNC lathe using PCD (polycrystalline diamond) insert under various machining conditions. With increasing nose radius of PCD insert, surface roughness initially increased due to increased cutting resistance, but decreased by the onset of sliding fracture. The lowest surface roughness was obtained at spindle speed of 1,300 rpm and lowest feed rate. Hard bodies were prepared by pressureless sintering the machined green bodies at several temperatures. The grinding test for sintered hard body was conducted using electroplated diamond bur with different grit sizes. During grinding, grain pull out in the composite was occurred due to thermal expansion mismatch between the alumina and zirconia. The strength of the composite decreased with alumina contents, due to increased surface roughness and high monoclinic phase transformed during grinding process. The final polished samples represented high strength by the elimination of a phase transformation layer.

Review : Effects of Corn Processing on Nutrient Utilization in Ruminants (반추가축에 있어서 옥수수 알곡의 가공이 영양소 이용에 미치는 영향에 관한 고찰)

  • Kim, W.Y.;Kim, H.W.;Lee, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.3 no.1
    • /
    • pp.102-115
    • /
    • 2001
  • Through out the last few decades, processing methods for ingredients of feed grains, such as grinding, flaking, extrusion, soaking, cracking etc., have been adopted in order to improve the nutrient digestibility in ruminants. Among feed grains, processing methods for whole corns have been the most frequently studied since corns are utilized as the thumb ingredients in formulating feeds. In these days, flaking of whole corns is the most incessantly used in formulation feeds, resulting in enhancing the performance of ruminants. Recently formulating non-forage feed for beef cattle, especially Holsteins, without processing whole corns is carrying out through various feed companies with expectations of whole corns acting like forages. However, it can not be ruled out that whole corns might possibly result in decreasing the productivity due to the depression of nutrient utilizations. Therefore, one must reevaluate the non-forage feeds as well as makes an effort to develop the rational and effective methodology in processing whole corns with the consideration of rumen eco-system.

Effect of Machining on Hard Anodizing Surface of Aluminum (절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향)

  • Kim, Su-Jin;Mun, Jeongil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

Processing Effects of Feeds in Swine - Review -

  • Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.597-607
    • /
    • 1998
  • Processing is generally employed to alter the physical and chemical properties of feeds used in pig diets, using hammer/roller mills, pellet mills and extruders/expanders. The reported optimum particle sizes of corn are approximately $500{\mu}m$, $500-700{\mu}m$, $400-600{\mu}m$, for nursery, growing-finishing, and breeder pigs respectively. Optimum particle size of grains are affected by diet complexity. There was a trend towards reducing particle size in order to increase ADG in pigs fed a simple diet, though such was not the case for pigs fed a complex diet. Uniformity of particle size also affects the nutritional values of swine feeds. Uniform particle sizes would consistently give greater nutrient digestibilities. In terms of pellet quality, it is reported that a higher incidence of fmes in pelleted feeds has a direct correlation with poorer feed conversion ratio in pigs. Particle and pellet sizes are also very important for pelleting in terms of grinding, digestibility, stomach ulceration and pellet durability. A particle size of $600{\mu}m$, or slightly less, seemed optimal for com in fmishing pigs, and the 5/32 in. diameter pellets supported the best efficiencies of gain during nursery and finishing phases. Extruder and/or expander processes would allow the feed industry an increased flexibility to utilize a wider spectrum of feed ingredients, and improve pellet quality of finished feeds. It would appear that extruded or expanded diets containing highly digestible ingredients have little effect on the growth performance of pigs, and the feeding values of the feeds over pelleted diets were not improved as pigs grew. The extruder or expander is much more effective than a pelletizer in salmonella control. Gastric ulcerations and/or keratinizations were consistently reported in pigs fed mash and processed diets containing finely ground grains, whereas carcass quality was not affected by diet processing methods such as pelleting, extruding or expanding. In corn- or sorghum-based diets, the electrical energy consumption is 4-5 times higher in the expanding than in the pelleting process. But the expander's processing cost was half of that shown by an extruder. Finally, the decision of which feed processing technology to adopt would depend on the processing cost, and any potential improvement in growth performance and digestibilities of nutrients should offset the increased operating and capital costs related to the extruder/expander technology over mash or pelleting processes in pigs.

A study on Improvement of Workpiece Deformation In High Frequency Heat Treatment (고주파 열처리에서 공작물 변형 개선에 관한 연구)

  • Hong, Sung-Oh;Kim, Hong-Bae;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • Base and saddle feed drive system in machine tool puts in operation for Improvement of life and endure by high frequency heat treatment. In this time, work requirement of establishment to gets by repeat experimentation. In this paper, using the finite elementary method, we predict and revision processing, and gets minimizing of deformation and reduce the progress of Grinding works. Moreover, having high frequency heat treatment, the maximum deformation genesis m the middle parts without slideway length. Take deformation Into finite element program (ANSYS) of taper process in roughing process, after having high frequency heat treatment, existed quantity of deformation can be reduced down to 80 percents.

  • PDF

In-process Detection of Surface Roughness and Waviness Using Laser Beam (레이저빔을 이용한 표면거칠기 및 파상도의 in-process 검출)

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.254-259
    • /
    • 1997
  • The measurement of surface roughness and waviness by means of noncontact method is an important area to be developed for GAC(Geometrical Adaptive Control) system. This paper deal with the design of noncontact in-process measurement system which measures the surface roughness and waviness during cylindrical grinding. This measuring system is simple and the apparatus proposed is composed of a laser unit, photodetector and optical system. During operation, the surface of a workpiece is continuously scanned by a laser beam. This method makes it possible to detect the surface roughness and waviness along the feed direction by control the spot diameter of laser beam. The experimental results show that the presence of chattering, loading and glazing can be detected sensitively along the feed directions.

  • PDF

A Study on Improving the Efficiency of Magnetic Abraslve Polishing for Die & Mold Surfaces (금형면의 자기연마가공 고효율에 관한 연구)

  • 이용철;안제정박;중천위웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.98-102
    • /
    • 1994
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential method for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of gridability by comparision with grinding wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by collegues. This study also aims to improve the efficiency of polishing by introducing the easily-polished shape surface milling method equalizing the tool feed per tooth to the pick feed. This milling method was experimentally confirmed to have sufficient grindability to polish milled surface (with 10 .mu. mRmax surface roughness) into mirror surface (with 0.4 .mu. mRmax surface roughness).

  • PDF

Turning the Machining Characteristics of Feed-through Ceramics (피드스루용 세라믹의 선삭 가공 특성에 관한 연구)

  • Park, Se-Jin;Ha, Jun-Tae;Yang, Dong-Ho;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.81-86
    • /
    • 2020
  • A ceramic vacuum chamber feedthrough ceramic insulator is made of Al2O3; the manufacturing process involves filling alumina powder into a urethane mold and pressing it with a rubber press to produce a molded body. Thereafter, manufacturing is completed through primary shape processing, sintering, and secondary shape processing in the green body, which is a pressurized molding body, This work is intended to prevent defects in the first shape processing by improving the ceramic insulator in the green body, and to improve the productivity of the ceramic insulator by determining the optimal processing conditions.

Analysis of Production Process of Fine Size Fraction of Korean Kaolin by Ball Mill Grinding I (Ball Mill 분쇄에 의한 고령토의 미분성분 생성과정의 해석 I)

  • 심철호;김상필;서태수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.35-40
    • /
    • 1986
  • The production process of a fine size fraction of Korean kaolin by ball milling is studied in this paper by analyzing the size distribution the size distribution of products with the Rosin-rammle formular and the rate process of cumulative size fractions with Alyavdin-Chujyo's formular. The size distribution is found to be divided in three regions a coarser part influenced by feed size an intermediate part where the size distribution shows a clear straight line relationship on Rosin-Rammler chart and the finest part with the ultimate limit of fineness by ball milling. Alyavdin-Chujyo's relationship is found to be valid over a very wide range of milling conditions. For different feed sizes the Alyavdin-Chujyo's relationship gives a group of straight lines with a common intersection point which can be defined as the limiting point of the persistent component region.

  • PDF