• 제목/요약/키워드: In-direct laser processing

검색결과 81건 처리시간 0.009초

유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석 (Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구 (A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing)

  • 이제훈;서정;한유희
    • 한국레이저가공학회지
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향 (Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting)

  • 이성훈;길태동;한상욱;문영훈
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

반도체 및 디스플레이 산업에서의 레이저 가공 기술 (Laser Processing Technology in Semiconductor and Display Industry)

  • 조광우;박홍진
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

Direct Laser Melting 공정시 차폐가스가 성형 특성에 미치는 영향 (The Effect of Shielding Gas on Forming Characteristics for Direct Laser Melting)

  • 한상욱;신세계로;주병돈;이철환;문영훈
    • 소성∙가공
    • /
    • 제22권6호
    • /
    • pp.334-339
    • /
    • 2013
  • Direct Laser Melting is a prototyping process whereby a 3-D part is built layer wise by melting the metal powder with laser scanning. This process is strongly influenced by the shielding gas and the laser operating parameters such as laser power, scan rate, layering thickness, and rescanning. The shielding gas is especially important in affecting the microstructure and mechanical properties. In the current study, fabrication experiments were conducted in order to analyze the effect of shielding gas on the forming characteristics of direct laser melting. Cylindrical parts were produced from a Fe-Ni-Cr powder with a 200W fiber laser. Surface quality, porosity and hardness as a function of the layering thickness and shield gas were evaluated. By decreasing the layering thickness, the surface quality improved and porosity decreased. The selection of which shield gas, Ar or $N_2$, to obtain better surface quality, lower porosity, and higher hardness was examined. The formability and mechanical properties with a $N_2$ atmosphere are better than those parts formed under an Ar atmosphere.

레이저 직접 용융 시 금속분말의 함량조정을 통한 경사물성 부여 (Functionally Graded Properties Induced by Direct Laser Melting of Compositionally Selected Metallic Powders)

  • 한상욱;지원종;이철환;문영훈
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.303-310
    • /
    • 2014
  • Functionally graded properties are characterized by the gradual variation in composition and structure through the volume of the material, resulting in corresponding gradation in properties of the material. Direct laser melting (DLM) is a prototyping process whereby a 3-D part is built layer-wise by melting metal powder with laser scanning. Studies have been performed on the functionally graded properties induced by direct laser melting of compositionally selected metallic powders. For the current study, quadrangle structures were fabricated by DLM using Fe-Ni-Cr powders having variable compositions. Hardness and EDX analysis were conducted on cross-sections of the fabricated structure to characterize the properties. From the analysis, it is shown that functionally graded properties can be successfully obtained by DLM of selected metallic powders with varying compositions.

Fabricating a Micro-Lens Array Using a Laser-Induced 3D Nanopattern Followed by Wet Etching and CO2 Laser Polishing

  • Seung-Sik Ham;Chang-Hwam Kim;Soo-Ho Choi;Jong-Hoon Lee;Ho Lee
    • 한국산업융합학회 논문집
    • /
    • 제26권4_1호
    • /
    • pp.517-527
    • /
    • 2023
  • Many techniques have been proposed and investigated for microlens array manufacturing in three-dimensional (3D) structures. We present fabricating a microlens array using selective laser etching and a CO2 laser. The femtosecond laser was employed to produce multiple micro-cracks that comprise the predesigned 3D structure. Subsequently, the wet etching process with a KOH solution was used to produce the primary microlens array structures. To polish the nonoptical surface to the optical surface, we performed reflow postprocessing using a CO2 laser. We confirmed that the micro lens array can be manufactured in three primary shapes (cone, pyramid and hemisphere). Compared to our previous study, the processing time required for laser processing was reduced from approximately 1 hour to less than 30 seconds using the proposed processing method. Therefore, micro lens arrays can be manufactured using our processing method and can be applied to mass productionon large surface areas.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

레이저 표면 경화처리 긍정변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of processing parameters for the laser surface hardening treatment)

  • 이세환;양영수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.260-263
    • /
    • 2000
  • A methodology is developed and many used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed for deciding the more effective laser input parameters for laser surface hardening treatment are considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method applied for sensitivity analysis. The interesting processing parameter is taken as the laser scan velocity and characteristic beam radius( $r_{b}$) of the sensitivity of the temperature T versus v and $r_{b}$ is analyzed. And these sensitivity results obtained in another parameters are fixed condition. To verifying the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis compared with the results of an experimental data.ata.

  • PDF