• Title/Summary/Keyword: In-Wheel

Search Result 3,327, Processing Time 0.029 seconds

Analysis on the wear patterns of wheel profiles for conventional line (기존선 차륜답면형상의 마모패턴 분석)

  • Hur Hyun-Moo;Lee Chan-Woo;Kwon Sung-Tae;Yun Chun-Han
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.651-655
    • /
    • 2003
  • The rolling-stocks used in conventional line have suffered wheel problems due to lack of adaptability with track. These brought out severe wheel flange wear, these have caused unstable ride characteristics of rolling-stock. Especially, Wheel flange wear is severely influenced by wheel profile but lateral suspension characteristics. This study was started to induce wheel profile suitable for domestic railway environment. Thus, we analyzed the wear characteristics of wheel profiles that are being applied to railway rolling-stock in KNR. To analyze wheel wear characteristics, we have conducted experiment studies for passenger rolling-stock and obtained useful datum.

  • PDF

A Study on High Efficiency Dressing of Diamond Grinding Wheel (다이야몬드 숫돌의 고능률 Dressing 에 관한 연구)

  • Choi, Kyoung-Il;Kang, Jae-Hoon;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.106-113
    • /
    • 1991
  • A diamond grinding wheel is generally used to grind hard and brittle materials, such as advanced ceramics. It is, however, quite difficult to dress a diamond grinding wheel efficiently because of its high degree of hardness. In this study, some investigations are carried out to increase dressing efficiecy of resinoid bonded diamond grinding wheel. Dressing forces are measured over a wide range of dressing conditions, and SEM observation of a grinding wheel is carried out. Special attention is paid to comparison between stick method and rotary brake method. Results obtained in this study provide useful information determining reguired dressing time, and for choosing efficient dressing condition for diamond grinding wheel.

  • PDF

Effect of Dry Lubrication to Reduce Wheel Flange Wear of Railcars in Railway of Iran (Case Study: Green Plour (GPIG) Passenger Train Coaches)

  • Ashofteh, Roya Sadat;Samari, Farhad
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • In this paper, the reduction effect of dry (solid) lubrication on wheel flange wear rates is studied. The solid / dry lubricator systems were attached to the most front and furthest back axles of a coach in order to examine the wear behavior of the equipped wheels. An attempt is also made to make a comparison between wear behaviors of these wheel flanges having dry lubrication devices with non-lubricated wheels in other railcars. Finally, a comparison is made between life-cycle of wheels under investigation and other similar wheel types.

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

An Experimental Study on Grinding Performance and Wear of Alumina Grinding Wheels Developed for High Performance Grinding (고능률 연삭용 알루미나 연삭숫돌의 연삭성능 및 마멸에 관한 실험적 연구)

  • Cho, Kisoo;Lee, Jongchan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.38-45
    • /
    • 1996
  • A new grinding wheel was developed for the high performance grinding of difficult-to-grinding materials. The grinding performance of the newly developed wheel including grinding forces, grinding ratio, and surface roughness of ground surface was evaluated through experiments. Experimental results show that the performance of the newly developed wheel is superior to the conventional alumina wheel and comparable to the Sol-gel wheel. An experimental investigation on the wear of alumina grinding wheel was also carried out. The experiments consist of the measurements of fracture strength of the abrasive grains, grinding force, and the area of wear flats of grinding wheels. Microscopic examination of abrasive grains was executed to observe the progress of wheel wear. The results indicate that the 32A grain, which has relatively lower fracture strength, wears out faster than 5SS and 5SG. The wheel wear occurs much faster in wet grinding than in dry grinding. It has also been found that the grinding forces increase logarithmically with increasing wear flats.

  • PDF

Reducing the Non Grinding Time in Grinding Operations(2nd report) -Decision of Dressing Chance and Depth by the Direct Measurement of Grinding Wheel Surface- (연삭가공에 있어 비가공 시간 단축에 관한 연구(II))

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.101-107
    • /
    • 1997
  • In general, grinding is one of the final machining processes which determines the surface quality of machined products. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit This paper describes a systematic approach to decide a proper dressing chance and an optimal dressing depth for the working grinding wheel. An eddy current sensor and a laser displacement sensor are used to measure the loading on the working wheel surface and the topography of the dressed wheel surface respec- tively. The dressing chance can be properly decided through the relational locus between the amount of handing and the machined surface roughness. An optimal dressing depth to guarantee the less wheel loss and the higher wheel surface quality is decided through the analysis of the variance of topography for the dressed wheel surface, which decreases at three different rates according to the accumulated dressing depth.

  • PDF

Variation of Grinding Force and Wheel Life in Surface Grinding (평면연삭에서 연삭력 변화와 숫돌수명)

  • Choi, Soung-Sam;Koo, Yang;Kwak, Jae-Seob;Ha, Man-Kyong;Park, No-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel grain affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, te grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the WA and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail- (철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석-)

  • 김재철;구동회
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

Evaluation of Wheel Life by Grinding Ratio and Static Force

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1072-1077
    • /
    • 2002
  • A degree of sharpness in wheel grains affects the surface roughness and dimensional accuracy in the grinding process. If a wheel with dull grains is used, the grinding force is increased and the surface roughness is deteriorated. In ovder to produce a precision component economically, the magnitude of the wear amount in the grinding wheel has to be limited. In this study, experimental evaluation of a wheel life varying with the grinding ratio and static grinding force was conducted. The grinding ratio and grinding force were measured to seek the grinding performance of the WA wheel. The relationship between the grinding ratio and static grinding force was presented.

A Study on the Enhancement of the Cooling Structure for In-wheel Motor (인휠 모터의 냉각 구조 개선에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Recently, the automobile of the future will be able to substitute an electric vehicle for an internal combustion engine, so the following research is actively in the process of advancing. A traction motor is one of the core parts which compose the electric vehicle. Especially, it is difficult to connect cooling water piping to an in-wheel motor because the in-wheel motor is located within the wheel structure. This structure has disadvantage for closed type and air cooling, so the cooling design of motor housing and internal in-wheel motor is important. In this study, thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. In order to improve cooling efficiency of the motor, we variously changed geometries of housing and internal shape. As a result, we found that the cooling efficiency was most excellent, in case the cooling groove direction was same with air flow direction and arranged densely. Furthermore, we investigated the cooling performance enhancement with respect to variable geometries of internal in-wheel motor.