• Title/Summary/Keyword: In-Wheel

Search Result 3,333, Processing Time 0.04 seconds

The Effectiveness Test of Improved Wheel Profile by Using Microphones (마이크로폰을 이용한 개선된 차륜답면 효과 시험)

  • Moon Kyeong-Ho;Hur Hyun-Moo;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.664-669
    • /
    • 2004
  • In rolling stock, wheels are one of the most important components to run on the track in safety. Especially, it is important that wheel profile cause the variation of dynamic characteristics and running safety. The purpose of this paper is to propose the wheel profile and to know the effectiveness of improved wheel profile by using microphones. We also performed analysis of running safety to know application of improved wheel profile before the test. In result, the improved wheel profile was stable in running safety and noise level was reduced.

  • PDF

STUDY ABOUT NOISE AND ABRASION OF THE CURVE DEPENDENT WHEEL FLANGE LUBRICATOR WITH GREASE SPRAY TYPE ON KOREAN RAIL (국내 선로에서 곡선감지형 그리스 분사식 후렌지 도유기에 대한 소음 및 마모의 연구)

  • Lee Ju-Ho;Yang Bang-Sub
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.585-588
    • /
    • 2004
  • In this study, Curve dependent wheel flange lubricator with grease spray type is investigated and estimated a point of view reducing wheel flange wear and noise in the curve through field test on korean rail. Advantage of curve dependent wheel flange lubricator with grease spray type is found on the basis of the result of field test in comparison with oil spray type lubricator and wheel without wheel flange lubricator on railroad in Korea.

  • PDF

Effects of Wheel Condition on Solidification Characteristics of Al-Cu Polycrystalline Ribbon (Al-Cu 다결정 리본의 응고거동에 미치는 휠조건의 영향)

  • Kim, Ju-Hyung;Lee, Sang-Mok;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.276-285
    • /
    • 1997
  • The effect of wheel surface condition on solidification behavior of Al-Cu ribbon was investigated in order to establish extreme levels of heat extraction. The condition of wheel surface was changed either by heating the wheel surface up to $200^{\circ}C$ or by coating boron nitride(BN) onto the the rim of a wheel. Heating the wheel surface up to $200^{\circ}C$ improved the wetting behavior between the molten metal and the rotating wheel, leading to an increase in the ratio of columnar structure to the entire thickness of Al-4.3wt%Cu and Al-33.2wt%Cu ribbons. For Al-4.3wt%Cu ribbon, assuming one grain as a single heterogeneous nucleation event at the contact point, the nucleation density with the wheel surface heated to $200^{\circ}C$, was $4{\times}10^6/mm^2$, and in the cases of BN coating with thin and thick layers, $10^5/mm^2$ and $5{\times}10^4/mm^2$, respectively. The largest cooling capacity of the wheel corresponded to the heated wheel surface, and as the thickness of BN coating layer increased, the cooling capacity of the wheel gradually decreased.

  • PDF

Evaluation of Thermal Dmage for Railway Weel (차륜에 대한 열손상 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Young-Kyu;Kim, Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.966-970
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

  • PDF

A Study on the Brake Frictional Heat between Wheel Tread and Brake Shoe of E.M.U.'s (도시철도 차량의 차륜답면과 제륜자간 제동 마찰열에 관한 연구)

  • Kim, Seong-Keol;Yoon, Cheon-Joo;Goo, Byeong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.95-103
    • /
    • 2006
  • Wheel treads of E.M.U. are usually under a heavy thermal load by brake frictional heat between wheel and brake shoe and damaged by repeated thermal and mechanical loads. To examine the cause of wheel tread damage of E.M.U.'s in service running, a systematic approach has been used. This study is composed of three parts. Frictional heat analysis was conducted in the first part by finite element method. Two kinds of brake shoes in service were considered. In the second part, experimental study was carried out on a brake dynamometer. Temperatures were measured for the two brake shoes. And experimental study in service running E.M.U.'s was performed. Wheel and brake shoe temperatures were measured by using thermocouples and temperature indicating strips. Finally metallurgical characteristics were examined by a SEM/EDS and the cause of the wheel damage was analyzed. It seems that aggregated ferrous component is a main cause of the wheel tread damage.

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

Design of Continuous Alternate Wheels for an Omnidirectional Mobile Robot

  • Kim, Jeong-Keun;Byun, Kyung-Seok;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.829-834
    • /
    • 2003
  • Many types of omnidirectional wheels with passive rollers have gaps between rollers. Since these gaps cause a wheel to make discontinuous contact with the ground, they lead to vertical and/or horizontal vibrations during wheel operation. In addition, the radii of passive rollers are related to the height of a bump an omnidirectional wheel can surmount. In this research a new design of the alternate wheel is proposed. Because this wheel makes continuous contact with the ground and has alternating large and small rollers around the wheel, it is termed a continuous alternate wheel (CAW). In this paper a design procedure is also presented to determine the optimum number of rollers, the radii of rollers and the inside inclination angle of an outer roller for given design specifications. The CAW based on this design is compared to the existing alternate wheels in terms of design. Finally, an actual continuous alternate wheel is constructed to verify validity of the design guidelines.

  • PDF

Analysis on the Running Stability of Rolling-stock according to Wheel Profile Wear (차륜답면형상 마모에 따른 차량 주행안정성 영향 분석)

  • Hur, Hyun-Moo;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • To analyze the effect of wear of wheel profile on the running stability of rolling-stock, theoretical and experimental studies were conducted on the profiles used in conventional lines. In experiment using 1/5 scale model to verify the results of the theoretical analysis, the test results of the critical speed for worn wheel profile samples show similar trend. In case of the conical type wheel profile(Profile 40), the equivalent conicity is increased with flange wear. But in case of the arc type wheel profile(Profile 20h), the equivalent conicity is decreased with flange wear. And the critical speed of the bogie was inverse proportion to the equivalent conicity. It is shown that the variation of the critical speed with the wheel wear could be changed according to the design concept and wear pattern of wheel profile. Results of the theoretical and experimental studies are discussed here.

Evaluation of Residual Stress of railway wheel (철도차량 차륜의 잔류응력 평가)

  • 서정원;구병춘;이동형;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.208-213
    • /
    • 2002
  • Railway wheel and axle are the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluation of wheelset strength and safety has been desired. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact and thermal stress from heat induced in braking. The objective of this paper is to estimate the variation and magnitude of the residual stress of railway wheel.

  • PDF