• Title/Summary/Keyword: In-Situ PBD penetration test

Search Result 4, Processing Time 0.018 seconds

Design Example of Gravel Mat for Horizontal Drains (쇄석Mat를 이용한 수평배수공법 설계사례)

  • Jeong, Kyeong-Han;Lee, Young-Keun;Lee, See-Woo;Kim, Jae-Sung;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.174-187
    • /
    • 2005
  • Recently, because of environment, cost, supply and demand factors, though applying sea-sand as horizontal drains is getting difficult that usage of Gravel has been growing in large size of construction sites, Study on engineering properties and behavior characteristics of Gravel stratum is not thoroughgoing enough. We have applied Gravel Mat as the horizontal drains in O O construction site. We also conducted several field tests such as Material property test, Geosynthetics damage test with Repeated load, Discharge capacity test performed by inflow of upper soil and In-situ PBD Penetration test to review the application of Gravel Mat. Test results show that Gravel Mat is not only advantageous in Trafficability and Water drainage by Consolidation due to its great Internal friction angle and Permeability, but also easy to penetrate with Mandrel and has great discharge capacity and guarantee of the stability against geosynthetics damage at the same time. With these benefits Gravel Mat shows great application in fields.

  • PDF

Capacity Evaluation of Cylindrical Plastic Board Drain with The Composite Discharge Capacity Apparatus (복합통수능시험기를 이용한 실린더형 플라스틱 보드 드레인의 성능 평가)

  • Lee, Chan-Woo;Jung, Du-Hwoe;Kim, Yun-Tae;Jin, Kyu-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.293-299
    • /
    • 2008
  • If a conventional type of Plastic Board Drain (PBD) is installed to the deep clay deposit, it is subjected to a high lateral earth pressure. a flow channel of PBD may be reduced by the collapse of cores and clogged by the intrusion of filter into the space between cores which are made by lateral pressure. It could decrease the ability of initial discharge capacity and the reliability of long term discharge capacity. A cylindrical plastic board drain (C-PBD) considered in this study consists of cylindrical core and several supports so that it can prevent the reduction of area of flow channel from the higher lateral earth pressure effectively. The discharge capacity of C-PBD was compared to that of a conventional PBD through performing experiments using the composite discharge capacity apparatus which can consider in-situ condition such as penetration of drains, ground settlement and discharge capacity. As a result, C-PBD showed much better performance than PBD in the ability of discharge. It was observed that the C-PBD was folded whereas the conventional PBD was folded after the experiment.

  • PDF

Effect of PBD to improve soft marine sedimentary ground

  • Jeong, Jin-Seob;Hwang, Woong-Ki;Jeong, Choong-Gi;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • The effect of plastic board drains (PBDs)on ground improvement was checked out considering three crucial factors: ground settlement, undrained shear strength, and residual water head. First, the settlement analysis including initial settlement induced by reclamation of sand mat was conducted by back calculation analysis with measured data. Its result showed toot the PBDs used for this site worked well on improving soft ground. Secondly, the undrained shear strength was investigated by laboratory and in-situ tests including unconsolidated-undrained triaxial compression (UU) tests, unconfined compression tests, in-situ vane tests, and cone penetration tests. From the test results, they showed that the undrained shear strength of the improved ground by PBDs was significantly increased as well as the strength increasing ratio especially $10{\sim}15m$ below the ground surface on site. Thirdly, the residual water head measurement from the in situ dissipation test was found the same as the static water head, which indicated primary consolidation was completed and the effect of soil improvement with PBDs can be confirmed.

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.