• Title/Summary/Keyword: In-SAR

Search Result 1,480, Processing Time 0.025 seconds

Technology Trend in Synthetic Aperture Radar (SAR) Imagery Analysis Tools (SAR(Synthetic Aperture Radar) 영상 분석도구 개발기술 동향)

  • Lee, Kangjin;Jeon, Seong-Gyeong;Seong, Seok-Yong;Kang, Ki-mook
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.268-281
    • /
    • 2021
  • Recently, the synthetic aperture radar (SAR) has been increasingly in demand due to its advantage of being able to observe desired points regardless of time and weather. To utilize SAR data, first of all, many pre-processing such as satellite orbit correction, radiometric calibration, multi-looking, and geocoding are required. For analysis of SAR imagery such as object detection, change detection, and DEM(Digital Elevation Model), additional processings are needed. These pre-processing and additional processes are very complex and require a lot of time and computational resources. In order to handle the SAR images easily, the institutions that use SAR images develop analysis tools and provide users. This paper introduces the function and characteristics of representative SAR imagery analysis tools.

Implementation about measurement of the head SAR and variable parameter according to operation control mode in brain MR study with 1.5Tesia (1.57 BRAIN MRI검사에서의 작동제어모드를 통한 두부 SAR측정과 변화인자에 관한 고찰)

  • Lee, Kyu-Su;Sim, Hyun;Moon, Ji-Hoon;Oh, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.58-60
    • /
    • 2007
  • Magnetic Resonance Imaging(MRI) has become a very widely used medical procedur e. Clo.sed and open systems are typically used with static magnetic fields at or below 2 Tesla. BWhole body SAR(specific absorbsion rate) is the value of SAR averaged over the entire body of the patient over any period of 15 minutes. Head SAR is the value of SAR averaged over the head of the patient for any period of 10 minutes. SAR is a measure of the absorption of electromagnetic energy in the body' (typically in watts per kilogram (W/kg)). The normal operating mode comprises values of head SAR not higher than 3 W/kg. The second level controlled operating mode comprises values higher than 3 W/kg. Current FDA guidance limits the SAR in the whole body. including the head to a range of 1.5 to 4.0 W/kg, depending on the patient's clinical condition. SAR, limit restrictions are incorporated in all MRI systems. and domestic' s guidance limits the SAR in a part body. including the head to 3.2w/kg and less. The purpose of this study is to evaluate on change of head SAR in using MRI pulse sequence and to check if exceed 3.2(w/kg) level in domestic a part exposure through measured head SAR. 23 patient's the average head SAR of pulse sequence is that T2WI sagittal is 0.5375. T2WI axial(FSE) is 0.4817, T1WI axial(SE) is, 0.8179. FLAIR axial is 0.4580. GRE axial is 0.0077, Diffusion is 0.0824w/kg. The head SAR exposed per patient was proved 2.3845w/kg less than the international standard. Coefficient of correlation for the relations body weight and SAR or for the relations ETL(echo train length) and SAR is 1 value. Coefficient of correlation for the relations between TR(time to repeat) and SAR is -0.602 value. so SAR increased relative to weight body and ETL. But the relations between TR and SAR is negative definite.

  • PDF

Efficient Motion Compensation Algorithm for Ground Moving Targets Based on SAR-ATI System (SAR-ATI를 이용한 효율적인 지상 이동 표적 보상 알고리즘)

  • Ryu, Bo-Hyun;Kang, Byung-Soo;Lim, Byoung-Gyun;Oh, Tae-Bong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.560-570
    • /
    • 2017
  • Recently, well-known SAR imaging algorithms have been developed to form the focused SAR images for stationary targets. In general, the conventional methods exploit the range variation only defined by the motion of radar platform and SAR geometry. However, for SAR imaging of ground moving targets, the motion of the targets induces an additional range shift, yielding the blurred SAR images. To overcome the problem, in this paper we propose an effective motion compensation algorithm operated under a multi-channel SAR, named along-track interferometry(ATI) and phase unwrapping to directly estimate the motion parameters of the targets. In simulations, 50 Monte-Carlo simulation results show the effectiveness of the algorithm in the presence of noise.

InSAR Studies of Alaska Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 2005
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of­meters over a large region. This paper describes basics of InSAR and highlights our studies of Alaskan volcanoes with InSAR images acquired from European ERS-l and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.

Development of High Resolution SAR(NexSAR) with 30 cm Resolution (분해능 30 cm급의 고해상도 SAR(NexSAR) 개발)

  • Kong, Young-Kyun;Kim, Hyung-Chul;Kim, Seung-Hwan;Kim, Soo-Bum;Yim, Jae-Hag
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.183-192
    • /
    • 2009
  • SAR(Synthetic Aperture Radar) is an all-weather imaging radar and is widely used in military and civil application. Especially high-resolution SAR images are very important in military purpose because it can be used at target recognition application. LIG Nex1 developed a SAR system called NexSAR with bandwidth of 600 MHz and resolution of 30 cm to obtain technologies required for high-resolution SAR. To achieve 600 MHz bandwidth of waveform generator, two DDSs are used and its output signals are SSB modulated. And deramp technique is used to reduce the sampling rate of ADC at high resolution mode. NexSAR has stripmap and spotlight modes and its functionality and performances are evaluated through ground and flight tests.

Development of Proto-type Program for Automatic Change Detection and Cueing of Multi-temporal KOMPSAT-5 SAR Imagery (다중시기 KOMPSAT-5 SAR 위성영상의 자동변화탐지알림 프로토타입 프로그램 개발)

  • Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1955-1969
    • /
    • 2022
  • Most of the public and private users who use national satellite information such as the KOMPSAT series mainly use Electro-Optical and Infrared (EO/IR) satellite images, and the utilization of Synthetic Aperture Radar (SAR) images is relatively insufficient. As KOMPSAT-5 currently in operation, KOMPSAT-6 and micro SAR satellite constellation systems are scheduled to be launched in the future, the demand for utilization of SAR satellite information is increasing in various fields. Accordingly, it is necessary to possess core technology for SAR utilization that can support the utilization of SAR satellite information for users. Due to the all-weather properties of SAR system, change detection technology is a key application technology. However, until now, the development of technology that automatic change detection and cueing using SAR images is insufficient. Through this study, the requirements of automatic change detection and cueing function using multi-temporal KOMPSAT-5 SAR satellite images were derived and a prototype program was developed. This prototype program aims to secure independent SAR utilization technology and promote the utilization of domestic SAR satellite information by practitioners in public sector organizations in Korea.

Evaluation of 3D-Positioning Method Using X-band SAR Satellite Images - Focused on InSAR, Radargrammetry and RPC (X-band SAR 위성영상의 3차원 위치결정 기법 평가 - 레이더 간섭기법, Radargrammetry, RPC를 중심으로)

  • Song, Yeong Sun;Lee, Jung Han;Jang, In Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.117-125
    • /
    • 2014
  • Korea's first X-band SAR satellite KOMPSAT-5 has been launched in 2013, so the research related to the X-band SAR satellite image is required to increase the utilization of KOMPSAT-5. In this study, we generated a DEM(Digital Elevation Model) using X-band SAR satellite images based on three methods which are InSAR, radargrammetry and RPC(Rational Polynomial Coefficients), and evaluated the performance of each methods. The four stripmap mode TerraSAR-X images taken in Daejeon were used to generate DEM, and accuracy was evaluated using DEM by IKONOS RPC. As results, DEM produced by the InSAR showed the highest accuracy. Also, we knew that RPC could be effective method if you want to create a large area DEM which contains the various elevation.

A Study on the SAR Measurement System Validation at 150 MHz Band (150 MHz 대역에서의 SAR 측정시스템의 유효성 연구)

  • Choi, Donggeun;Kim, Kihwea;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1008-1016
    • /
    • 2013
  • SAR measurement which was applied only to the mobile phone has been expanded in the Korean radio regulation law to the portable wireless communication equipments within 20 cm from the human body since Jan. 2012. The two-way radio operating at 150 MHz frequency band was newly included following the revised radio regulation in the target equipment of measurement. SAR measurement system at 150 MHz satisfying this regulation is necessary accordingly for SAR conformity assessment. The international SAR measurement standard(IEC 62209-2) includes the evaluation method on frequencies above 300 MHz, and the commercial SAR measurement system can measure SAR above 300 MHz only. The size of the reference dipole antenna(760 mm, return loss: -27.57 dB) and flat phantom ($1,300 mm(L){\times}900 mm(W){\times}200 mm(H)$), targeted SAR values for numerical analysis(1 g: 1.08 W/kg, 10 g: 0.77 W/kg) for SAR validation evaluation at 150 MHz frequency are proposed in this paper. The suggested dipole antenna and flat phantom are assembled and used to verify the conformity assessment of commercial SAR measurement system. The measured SAR values of 1 g and 10 g were obtained respectively to be 1.13 W/kg, 0.81 W/kg, and they satisfied the effective range(within ${\pm}10$ %) of IEC international standard. The standards based on this study are expected to be used for the domestic SAR measurement standard and IEC(International Electrotechnical Commission) international standard.

Ocean Wind Retrieval from RADAR SAR images in Korean seas (SAR자료를 이용한 해상풍 산출 및 현장 자료간의 비교.검정)

  • Yoon Hong-Joo;Park Kwang-Soon;Kim Sang-Ik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.706-711
    • /
    • 2006
  • In order to retrieve ocean wind from SAR() image, and to estimate and validate between SAR-derived wind and in-situ wind, with RADAR SAR ocean images and real time marine meteorological data. It was used images with more than 10km to analyze the band of wind in SAR image by FFT(First Fourier Transformation) method and was used CMOD5 as wind retrieval model to retrieve ocean wind. In this study, generally it showed good results as RMS presented 0.8m/s for speed and 8 degree for direction, and especially when wind was hish speed, it presented very good results.

Development of SAR Image Quality Performance Analysis Tool for High Resolution Spaceborne Synthetic Aperture Radar (고해상도 위성 SAR 영상품질 성능 분석 툴 개발)

  • Oh, Tae-Bong;Jung, Chul-Ho;Song, Sun-Ho;Shin, Jae-Min;Kwag, Young-Kil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2010
  • In this paper, the typical Synthetic Aperture Radar (SAR) image quality parameters and analysis method are defined, and the SAR image analysis tool is presented for SAR image evaluation. The structure of the developed SAR image analysis tool consists of four key modules; point target analysis (PTA) module, distributed target analysis (DTA) module, ambiguity analysis (AMA) module, and NESZ analysis (NESZA) module. The developed tool is able to extract the various SAR system parameters from standard SAR product format files. Based on these extracted system parameters, typical SAR image quality parameters are derived from SAR image data.