• 제목/요약/키워드: In-Contect learning

검색결과 1건 처리시간 0.013초

Super In-Context Learning을 활용한 생성 방법론 (Generation Methodology Using Super In-Context Learning)

  • 홍성태;이승준;김경민;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.382-387
    • /
    • 2023
  • 현재 GPT-4와 같은 거대한 언어 모델이 기계 번역, 요약 및 대화와 같은 다양한 작업에서 압도적인 성능을 보이고 있다. 그러나 이러한 거대 언어 모델은 학습 및 적용에 상당한 계산 리소스와 도메인 특화 미세 조정이 어려운 등 몇 가지 문제를 가지고 있다. In-Context learning은 데이터셋에서 추출한 컨택스트의 정보만으로 효과적으로 작동할 수 있는 효율성을 제공하여 앞선 문제를 일부 해결했지만, 컨텍스트의 샷 개수와 순서에 민감한 문제가 존재한다. 이러한 도전 과제를 해결하기 위해, 우리는 Super In-Context Learning (SuperICL)을 활용한 새로운 방법론을 제안한다. 기존의 SuperICL은 적용한 플러그인 모델의 출력 정보를 이용하여 문맥을 새로 구성하고 이를 활용하여 거대 언어 모델이 더욱 잘 분류할 수 있도록 한다. Super In-Context Learning for Generation은 다양한 자연어 생성 작업에 효과적으로 최적화하는 방법을 제공한다. 실험을 통해 플러그인 모델을 교체하여 다양한 작업에 적응하는 가능성을 확인하고, 자연어 생성 작업에서 우수한 성능을 보여준다. BLEU 및 ROUGE 메트릭을 포함한 평가 결과에서도 성능 향상을 보여주며, 선호도 평가를 통해 모델의 효과성을 확인했다.

  • PDF