• Title/Summary/Keyword: In vivo imaging system

Search Result 100, Processing Time 0.024 seconds

Measurement of the Skin Blood Flow using Cross-Correlation (Cross-Correlation법에 의한 피부 혈류속도 측정)

  • Lee, Jeong-Taek;Im, Chun-Seong;Ryu, Jeom-Su;Lee, Jong-Su;Gong, Seong-Bae;Kim, Yeong-Gil
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 1998
  • To measure precisely the blood velocity in the skin microcirculation, we have used time domain correlation (called Cross-Correlation) based on the processing of the backscattered RF signal obtained with a wideband echographic imaging transducer, although it is difficulties of adaptation of the pulsed wave system, because of the data processing in real time and the hardware problem. This dedicated technology based on a 20MHz echographic imaging system has been developed. We present how the experimental data, i.e. the backscattered RF signal, have to be analyzed. After RF lines realignment, stationary echo canceling procedure and correlation level control, a velocity profile has been obtained. In-vitro result show that velocity measurements as low as 0.1mm/sec attainable with a 80${\mu}m$ in axial resolution. We have also validated with in-vivo experimentation on the external ear of a rabbit using B-mode sector scanning image and M-mode image of a custom made 20MHz skin image system. The flow of the "auriculares caudales" vein, a microvessel of 600 m diameter, has been detected and studied. This technique will allow a more precise exploration of circulatory troubles in cutaneous pathologies.

  • PDF

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

Metabolic Abnormalities in Patients with Mitochondrial Myopathy Evaluated by In Vivo $^{31}$P Magnetic Resonance Spectroscopy (인($^{31}$P) 자기공명분광법을 사용하여 사립체 근질병환자와 정상인과의 대사물질 비교조사)

  • Bo-Young Choe
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Purpose : To investigate the phosphorus metabolic abnormalities in skeletal muscle of patients with mitochondrial myopathy using in vivo $^{31}P$ magnetic resonance spectroscopy(MRS). Materials and Methods : Patients with mitochondrial myopathy(N=10) and normal control subjects (N=10) participated. All in vivo $^{31}P$ MRS examinations were performed on 1.5T whole-body MRI/MRS system by using an image selected in vivo spectroscopy (ISIS) pulse sequence that provided a $4{\times}4{\times}4{\;}cm^{3}$ volume of interest (VOI) in the right thigh muscle tissue. Peak areas for each phophorus methabolite were measured using a Marquart algorithm. Results : The specific features in patients with mitochondrial myopathy were a significant increase of Pi/PCr ratio (p=0.003) and a significant decrease of ATP/PCr ratio (p=0.004) as compared with normal controls. In particular, the ${\beta}-ATP/PCr$ ratio between controls and patients with mitochondrial myopathy was predominantly altered. Conclusions : In vivo $^{31}P$ MRS may be a useful modality in the clinical evaluation of patients with mitochondrial myopathy based on ATP/PCr and Pi/PCr ratios in skeletal muscle tissue and provides a valuable information in further understanding disorders of muscle metabolism.

  • PDF

Radiotracers for Functional Neuroimaging (기능성 신경영상화를 위한 방사성추적자)

  • Lee, Byung-Chul;Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • After the development of two major techniques - SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) to image the human subjects in a three-dimensional direction in the 1980s, many radiotracers have been used for functional neuroimaging. Still it would be very important study to develop selective radiotracers for functional neuroimaging. New radiotracers will help to expand the knowledge of neurotransmitter systems and of the genetic contribution to receptor or transporter availability. Neurotransmitter depletion-restoration studies, the distribution of brain functions and their modulation by neurotransmitter system aid in better understanding and limiting the side effects of drugs used as well as newly developed. In audition, these radiotracers will be thus very useful to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the introduction of radioligands for the functional neuroimaging. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Effects of Temperature Change on the Current Injected MRI (전류 주입 자기공명영상에 온도 변화가 미치는 영향)

  • 이수열;강현수;우응제;조민형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2001
  • It is well known that the electrical impedance of biological tissues is very sensitive to their temperature. In this paper, we have analyzed the effects of temperature change on the phase of magnetic resonance images obtained with external current injection. It has been found that the local phase in the current injected magnetic resonance image can be changed noticeably when local temperature change appears at a part of the tissue. At the experiments with a 0.3 Tesla MRI system, we observed the local phase changes at the phantom images when the phantom temperature was varied between 25 -45$^{\circ}C$. We think that the current injection MRI technique can be used for in-vivo monitoring of the temperature inside biiological tissues if the relation between the local temperature and phase can be quantified.

  • PDF

The Study of in Vivo Visual Pathway Tracing using Magnetic Magnanese Tracer (자성 망간 추적자를 이용한 in Vivo 시신경경로 추적에 관한 연구)

  • Bae, Sung-Jin;Chang, Yong-Min
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Purpose: To evaluate the tracing of optic nerve tract using manganese enhanced magnetic resonance Imaging. Materials and Methods: After injecting $30{\mu}l$ of $MnCl_2(1mol)$ (1 mol) Into the retina of female New Zealand white rabbit, the contrast enhancements at major anatomical structures of optic nerve tract were evaluated by high resolution T1-weighted Images 12 hours, 24 hours, and 48 hours after $MnCl_2(1mol)$ Injection using 3D FSPGR (Fast Speiled Gradient Recalled echo) pulse sequence at 1.5T clinical MR scanner with high performance gradient system. Also, for quantitative evaluation, the signal-to-noise ratios of circular ROI on anatomical locations were measured. Results: The major structures on the optic nerve tract were enhanced after injecting $MnCl_2(1mol)$. The structures, which showed enhancement, were right optic nerve, optic chiasm, left optic tract, left lateral geniculate nucleus, left superior colliculus. The structures on the contralateral optic pathway to the right retina were enhanced whereas the structures on the ipsilateral pathway did not show enhancement. Conclusion: The Mn transport through axonal pathway of optic nerve sys)em was non- invasively observed after injecting injecting $MnCl_2$ at the retina, which is the end terminal of optic nerve system. This Mn transport seems to occur by voltage gated calcium $(Ca^{2+})$ channel and In case of direct Injection Into the retina, the fast transpori pathway of voltage gated calcium channel seems to be responsible for Mn transport.

  • PDF

Usefulness of $^{99m}Tc$-labeled RBC Scan and SPECT in the Diagnosis of Head and Neck Hemangiomas (두경부 혈관종 진단시 $^{99m}Tc$-RBC Scan and SPECT 검사의 유용성)

  • Oh, Shin-Hyun;Roh, Dong-Wook;Ahn, Sha-Ron;Park, Hoon-Hee;Lee, Seung-Jae;Kang, Chun-Goo;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Purpose: There are various methods to diagnose hemangioma, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine. However, by development of SPECT imaging, the blood-pool scan using $^{99m}Tc$-labeled red blood cell has been used, because it was non-invasive and the most economical method. Therefore, in this study, we proposed that the usefulness of $^{99m}Tc$-RBC scan and SPECT of the head and neck to diagnose unlocated hemangiomas. Materials and Methods: $^{99m}Tc$-RBC scan and SPECT was performed on 6 patients with doubtful hemangioma (4 person, head; 1 person, neck; 1 person, another). We labeled radiopharmaceutical using modified in vivo method and then, centrifuged it to remove plasma. After a bolus injection of tracer, dynamic perfusion flow images were acquired. Then, anterior, posterior, both lateral static blood-pool images were obtained as early and 4 hours delayed. SPECT was progressed 64 projections per 30 seconds. Each image was interpreted by physicians, Nuclear medicine specialist, and technologist blinded to patient's data. Results: In 5 patients of all the radioactivity of doubtful site didn't change in flow images, but, in blood-pool, delayed and SPECT images, it was increased. So, it was a typical hemangioma finding. The size of lesion was over 2 cm, and it could discriminate as comparing to the delayed and SPECT imaging. On the other hand, in 1 patient, the radioactivity was increased in blood-pool images, but, not in delayed and SPECT images, so, it was proved no hemangioma. Conclusion: Using $^{99m}Tc$-RBC Scan and SPECT, we could diagnose the hemangiomas in head and neck, as well as, liver, more non-invasive, economical, and easy. Therefore, it considered that $^{99m}Tc$-RBC scan and SPECT would offer more useful information for diagnosis of hemangioma, rather than otherimaging such as US, CT, MRI.

  • PDF

Classification of submitted KSNMT dissertation (대한핵의학기술학회 투고 논문 분류)

  • Han, Dong-Chan;Lee, Hyuk;Hong, Gun-Chul;Ahn, Byeong-Ho;Choi, Seong-Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.65-69
    • /
    • 2017
  • Purpose KSNMT(Korea Society of Nuclear Medicine Technology) stepping first step in 1997, has published first journal related with nuclear medicine technology in 1985. With classifying In Vivo Session Dissertation reported in the entire journal, trend of the Dissertation will be studied. Materials and Methods Dissertations which published from 1985 to first half of 2016 in the journal are classified with presentation form and with scanner, And all the data is organized with Excel program. Through the data, the number of dissertations published in each year, the number of dissertation published in details, and keyword distributions in each period are analyzed. Results The number of In-vivo section dissertations was 1151 and the number of In-vivo section dissertations that have common subject with In-vitro section was 28. The number of In-vivo section dissertation in 1980s was 46, in 1990s was 149, in 2000 was 467 and from 2010 to the first half of 2016 was 517. The number of dissertation with original articles was 571, with abstract was 529, with symposium was 31, with special lecture was 25, with review was 11, with interesting image was 7, with poster was 3 and with case report was 2. With symposium and special lecture excluded, which count 56, the number of dissertation with PET was 319, with Planar was 302, with SPECT was 172, with radiopharmaceutical was 113, with guard and safety management 103, with BMD was 28, etc. was 86. The number of dissertation about oncology was 201, about scanner was 179, about cardiovascular and circulatory system was 102, about safe environment was 82, about musculoskeletal system was 76, about nervous nuclear medicine was 66, about quality assurance was 61, about genitourinary system was 56, about endocrine system was 49, about digestive system was 44, about Therapy, about industrial safety was 24, about molecular imaging was 15, infection and inflammation was 9, about respiratory system was 8 and etc. was 108. The mostly used keyword through 1999 to 2005 was PET and through 2006 to 2016 was PET/CT. Conclusion To encourage various dissertations to be submitted, Korea Society of Nuclear Medicine should analyze date about not only about dissertations that are already published, but also about various research materials. Moreover, Korea Society of Nuclear Medicine also have to provide technical support such as sharing big data from homepage and systematical support to its member to publish dissertation that has high impact factor. It is important each individual researcher to have continuing effort as well as each organization cooperation.

  • PDF

Development of High Intensity Focused Ultrasound (HIFU) Mediated AuNP-liposomal Nanomedicine and Evaluation with PET Imaging

  • Ji Yoon Kim;Un Chul Shin;Ji Yong Park;Ran Ji Yoo;Soeku Bae;Tae Hyeon Choi;Kyuwan Kim;Young Chan Ann;Jin Sil Kim;Yu Jin Shin;Hokyu Lee;Yong Jin Lee;Kyo Chul Lee;Suhng Wook Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Liposomes as drug delivery system have proved useful carrier for various disease, including cancer. In addition, perfluorocarbon cored microbubbles are utilized in conjunction with high-intensity focused-ultrasound (HIFU) to enable simultaneous diagnosis and treatment. However, microbubbles generally exhibit lower drug loading efficiency, so the need for the development of a novel liposome-based drug delivery material that can efficiently load and deliver drugs to targeted areas via HIFU. This study aims to develop a liposome-based drug delivery material by introducing a substance that can burst liposomes using ultrasound energy and confirm the ability to target tumors using PET imaging. Liposomes (Lipo-DOX, Lipo-DOX-Au, Lipo-DOX-Au-RGD) were synthesized with gold nanoparticles using an avidin-biotin bond, and doxorubicin was mounted inside by pH gradient method. The size distribution was measured by DLS, and encapsulation efficiency of doxorubicin was analyzed by UV-vis spectrometer. The target specificity and cytotoxicity of liposomes were assessed in vitro by glioblastoma U87mg cells to HIFU treatment and analyzed using CCK-8 assay, and fluorescence microscopy at 6-hour intervals for up to 24 hours. For the in vivo study, U87mg model mouse were injected intravenously with 1.48 MBq of 64Cu-labeled Lipo-DOX-Au and Lipo-DOX-Au-RGD, and PET images were taken at 0, 2, 4, 8, and 24 hours. As a result, the size of liposomes was 108.3 ± 5.0 nm at Lipo-DOX-Au and 94.1 ± 12.2 nm at Lipo-DOX-Au-RGD, and it was observed that doxorubicin was mounted inside the liposome up to 52%. After 6 hours of HIFU treatment, the viability of U87mg cells treated with Lipo-DOX-Au decreased by around 20% compared to Lipo-DOX, and Lipo-DOX-Au-RGD had a higher uptake rate than Lipo-DOX. In vivo study using PET images, it was confirmed that 64Cu-Lipo-DOX-Au-RGD was taken up into the tumor immediately after injection and maintained for up to 4 hours. In this study, drugs released from liposomes-gold nanoparticles via ultrasound and RGD targeting were confirmed by non-invasive imaging. In cell-level experiments, HIFU treatment of gold nanoparticle-coupled liposomes significantly decreased tumor survival, while RGD-liposomes exhibited high tumor targeting and rapid release in vivo imaging. It is expected that the combination of these models with ultrasound is served as an effective drug delivery material with therapeutic outcomes.