• Title/Summary/Keyword: In vivo dry matter digestibility

Search Result 61, Processing Time 0.027 seconds

Effects of Supplementation of Ruminally Protected Amino Acids on In vitro Ruminal Parameters and Milk Yield and Milk Composition of Dairy Cows in Mid-lactation (보호아미노산의 추가 공급이 반추위 발효성상 및 비유중기 착유우의 유량 및 유성분에 미치는 영향)

  • Lee, Jong-Min;Nam, In-Sik;Ahn, Jong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • This study was undertaken to investigate the effects of ruminally protected amino acids (Methionine and Lysine) on in vitro ruminal parameters, and in vivo milk yield and milk composition in mid-lactating cows. In the first in vitro experiment, there were no statistical significances between treatments in ruminal pH and dry matter digestibility during various incubation times. In the second in vivo experiment, milk yield decreased by 11.92% in control and 5.68% in the treatment respectively, but decrease rate of milk yield in the treatment was lower than control. Milk yields naturally decreased as time goes by since the DIMs(Days in milk) of the cows in experiment were in mid-lactation period. 4% FCM(Fat corrected milk) and milk protein yields also, respectively, decreased by 11.25% and 11.09% in control and 6.16% and 5.47% in the treatment as compared with the intial. Milk protein and milk fat production were higher in the treatment(0.90kg, 1.10kg) than those of control(0.66kg, 0.79kg). Milk fat content significantly increased with supplementing protected amino acids as compared to control(P<0.05). From the above results, protected amino acids were positively utilized in the performances of mid-lactating cows without inhibiting rumen fermentation. Further investigation is suggested for essential amino acid composition and intestinal digestion rate out of rumen bypass protein in dietary protein to be estimated.

Effect of Four Medicinal Plants on In Vitro Ruminal Fermentation and Methane Emission (약용식물 4종의 in vitro 반추위 발효 성상 및 메탄 저감에 대한 영향)

  • Kim, Hyun-Sang;Lee, Seong-Shin;Wi, Ji-Soo;Lee, Yoo-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.3
    • /
    • pp.289-298
    • /
    • 2024
  • The objective of this study was to the effect of four medicinal plants (Rheum palmatum, Pharbitidis semen, Reynoutria japonica, Tribulus semen) supplementation on methane reduction and ruminal fermentation in in vitro batch culture method. Each medicinal plant was supplemented 5% on a substrate basis in the bottle, then filled with buffered rumen fluid. Incubation was conducted for 24 hours in a shaking incubator (39℃, 120 rpm). The ruminal pH values were not significantly different between the control and treatment groups. However, the digestibility of the feed was significantly higher in the group supplemented with medicinal plants than control group. Methane production (mL/g of digested dry matter) and total gas production (mL) was significantly lower in the treatment group compared to the control group in Tribulus semen group. Total volatile fatty acids concentration were significantly higher in all treatment groups than control group, and acetate concentration was significantly higher in all treatment groups than control group except for Rheum palmatum group. Propionate concentration was significantly higher in all treatment groups than control group, while butyrate concentration was significantly higher in Rheum palmatum group than control group. Ammonia nitrogen concentration was significantly higher in all treatment groups than control group. In conclusion, the addition of medicinal plants did not negatively impact rumen fermentation, and the results indicate that Tribulus semen has potential as a feed additive for reducing methane emissions.

Effects of Dicarboxylic Acid as an Alternative to Antibiotic on in vitro Rumen Parameters, Milk yield and Milk Compositions in Lactating Cows (항생제 대체제로서 Dicarboxylic Acid 급여가 in vitro 반추위 발효성상, 착유우의 유량 및 유성분에 미치는 영향)

  • Nam, In-Sik;Ahn, Yong-Dae;Jeong, Ki-Hwan;Ahn, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.453-463
    • /
    • 2016
  • This study was undertaken to investigate the effects of dicarboxylic acid supplementation, as replacement antibiotics, of on in vitro ruminal parameters and milk yield and milk composition in lactating cows. in vitro treatments were 1) Con (4 g of basal diet), 2) CM (4 g of basal diet + 0.05 ml of monensin), 3) CR (4 g of basal diet + 0.1 ml of dicarboxylic acid) and in vivo treatments were 1) Con (25 kg of basal diet/head/day), and 2) CR (25 kg of basal diet + 5 g of dicarboxylic acid/head/day), respectively. A total 10 lactating dairy cows ($649{\pm}19kg$ average body weight, $99{\pm}65$ average milking days) were divided in to two groups according to mean milk yield and number of days of postpartum. The cows fed a basal diet during adaptation (2 wk) and experimental diets during the treatment periods (4 wk). In the first in vitro experiment, there were no statistical differences between treatments in pH, gas production, and ammonia-N and lactic acid concentration during incubation. However, dry matter digestibility was significantly higher in CR treatment compared to control or CM treatment (P<0.05). Total VFA was tended to higher in CR treatment than those of control and CM treatment (P>0.05). In the second experiment, milk yield was significantly higher in treatment (40.39 kg) compared to control (35.19 kg), (P<0.05). Milk composition and MUN were not changed by dietary supplementing dicarboxylic acid. Therefore the present results reporting that supplementation of dicarboxylic acid might enhance the stabilization of ruminal fermentation and increase the milk yield of lactating cows.

Nutrient analysis and in vitro rumen fermentation of commercial formulated concentrates for finishing Hanwoo steers

  • Kim, Hanbin;Lee, Songhee;Jeong, Soohyun;Park, Joongkook;Shin, Taeksoon;Cho, Byungwook;Cho, Seongkeun;Kim, Byeongwoo;Seo, Jakyeom
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.802-809
    • /
    • 2016
  • The objective of this study was to evaluate the nutritional value of commercial compound feeds for late finishing Hanwoo steers using detailed chemical analysis and an in vitro rumen fermentation trial. A total of 4 different feeds were selected and used to conduct a chemical analysis for their nutrient contents. The largest variation in nutrients contents among experimental feeds was found in ether extract and the smallest one was found in total digestible nutrients. Commercial feeds C and D had a higher energy value than the others. Even if C and D had a similar feed energy value, the components used to increase energy differed between them (non-fiber carbohydrate [NFC] for C; ether extract for D). In the in vitro trial, no significant difference was observed in dry matter in vitro digestibility and gas production between treatments. However, the highest ammonia concentration (p < 0.05) was observed in C and D feeds. The low acetate to propionate ratio observed in C feeds (p < 0.01) suggested that this feed had high starch based carbohydrates that NFC degrading bacteria used to produce more propionate. It is important to provide nutritional information to farmers so that they can select the appropriate commercial feeds to suit their own feeding strategies. This study might give supporting information to farmers for a more educated, and better, selection of feeds. Further in vivo studies should be conducted to evaluate the effects of different commercial feeds on growth performances in late finishing Hanwoo steers.

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

Effect of Whole or Steam-flaked Corn Based Diet on Ruminal fermentation Characteristics In Vitro and Ruminal Metabolism in Korean Native Goat In Vivo (통옥수수 및 Steam-flaked 옥수수 기초사료가 반추위미생물 발효성상과 한국재래산양 반추위대사 특성에 미치는 영향)

  • Bae, G.S.;Bae, J.H.;Yun, S.J.;Chang, M.B.;Ko, J.Y.;Ha, Jong-K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.757-768
    • /
    • 2002
  • These study were conducted to determine the effects of a whole or steam-flaked corn based diet on rumen microbial fermentation in vitro and ruminal metabolism in the Korean Native Goat(KNG) in vivo. The experiments consisted of two dietary treatments: control, steam-flaked corn(SFC) based diet(80%) + rice straw mixed(20%)(SFCR); 100% whole corn based diet(WC). The first experiment was conducted to investigate the effect of whole corn on ruminal metabolism in vitro for 0 to 48 h. pH values were optimally maintained during incubation time, and were not significantly different between treatments. Gas production of SFCR was significantly higher than WC(p<0.01). $NH_3$-N concentration tended to increase for WC, but not significantly different between treatments. The mean value of total volatile fatty acid concentration of WC was significantly lower than SFCR(p<0.01), but SFCR and WC linearly increased as the time of incubation approached 48 h. Mean value of acetate concentration of SFCR was significantly higher than WC(p<0.01). Propionate concentration of WC for the total incubation time was significantly higher than SFCR(p<0.01). The digestibility of dry matter was not significantly different between treatments, but SFCR was somewhat higher than WC. The second experiment was conducted to effect of whole shelled corn based diet on rumen metabolism in KNG. pH values tended to decrease through all treatments. There was not a significantly difference between treatments. Microbial protein yield of SFCR was significantly higher than WC(p<0.01). $NH_3$-N concentration of WC was significantly (p<0.01) higher than SFCR. Total VFA and propionate concentration of WC was significantly higher than SFCR(p<0.01), but acetate concentrate of WC was not significantly higher than SFCR. The mean value of total lactate concentration was significantly(p<0.01) different but the value of SFCR and WC were lower than the average concentration of acidosis. In sacco DM disappearance rate of SFC was significantly(p<0.01) higher than WC.

Evaluation of nutritive value of chestnut hull for ruminant animals using in vitro rumen fermentation (밤 가공 부산물의 반추가축용 사료 가치 평가: in vitro 반추위 배양)

  • Jeong, Sin-Yong;Jo, Hyeon-Seon;Park, Gi-Su;Kang, Gil-Nam;Jo, Nam-Chul;Seo, Seongwon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • During the manufacturing process of chestnut, 50% of biomass is produced as chestnut shell (CS) or chestnut hull (CH), a forestry by-product. Due to its high fiber content and economic benefit, there is a possibility of using chestnut hull as a supplement for a ruminant diet. Few studies, however, have been conducted on evaluating nutritive value of chestnut hull for ruminant animals. The objective of this study were thus to analyze chemical composition of CS, a by-product after the first processing of chestnut, and CH, a by-product after the second processing, and access in vitro rumen fermentation characteristics of them. For the in vitro fermentation using strained rumen fluid obtained from a fistulated Hanwoo steer, commercial total mixed ration (TMR) for dairy goat was used as a basal diet and was replaced with different proportions of chestnut shell and hull. A total number of 13 treatments were carried out in this study: 100% TMR, 100% CS, 100% CH, a mix with 50% CS and 50% of CH (MIX), TMR replaced with 5%, 10%, or 15% of CS, CH, or MIX, respectively. For each treatment, in vitro dry matter digestibility (IVDMD) and pH after 48 hours of rumen fermentation were measured. Gas production at 6, 12, 24, 48 hours of incubation was also analyzed. Compared to CH, CS contains higher level of fiber (NDF, ADF, lignin) and consequently has a lower amount of non-fiber carbohydrate, but no difference was observed in the other nutrients (i.e. crude protein, crude fat, and ash). IVDMD was significantly (p<0.05) the highest in 100% CH (71.97%) and the lowest in 100% CS (42.80%). Addition of CH by replacing TMR did not affect IVDMD, while an increase in the proportion of CS tended to decrease IVDMD. The total gas production after 48 hours of incubation and the rate of gas production were also the highest in 100% CH and the lowest in 100% CS (P<0.05). Likewise, the pH after 48 hours of fermentation was significantly (p<0.05) the lowest in 100% CH (6.33) and the highest in 100% CS (6.50), and no significant difference in gas production was observed when TMR was replaced with CS or CH up to 15% (P>0.05). In conclusion, CH may successfully be used for a supplement in a ruminant diet. The nutritive value of CS is relative low, but can replace, if not 100%, low quality forage. This study provides valuable information about the nutritive value of CS and CH. An in vivo trials, however, is needed for conclusively accessing the nutritive value of CS and CH.

Feed Evaluation of Whole Crop Rice Silage Harvested at Different Mature Stages in Hanwoo Steers Using In Situ Technique (In situ 방법을 이용한 수확시기별 총체벼 사일리지의 한우 생체 사료가치 평가)

  • Choi, Chang-Weon;Chung, Eui-Soo;Hong, Seong-Koo;Oh, Young-Kyoon;Kim, Jong-Geun;Lee, Sang-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Three Hanwoo steers (BW $623{\pm}18.5kg$) with ruminal and duodenal cannulae were used to investigate nutrients degradability and total digestible nutrient (TDN) of whole crop rice silage (WRS) harvested at different mature stages using in situ technique. Crude protein content (mean 4.81%) decreased with progressed maturity at harvest except for WRS harvested at yellow stage. Ruminal dry matter degradability of WRS at milk stage tended to be slightly lower than that of the other stages during the entire incubation time from 12 h post-incubation. The rapidly degradable N (a-fraction) of WRS harvested at milk stage was significantly (p<0.05) higher than that of WRS at dough stage whereas the slowly degradable N (b-fraction) of WRS harvested at yellow and dough stages were statistically (p<0.05) higher than those of the other WRS. Effective protein degradability (EPD) of WRS harvested at yellow stage was numerically (compared with dough and milk stages) and statistically (compared with mature stage) higher than EPD of the other WRS. Protein digestibility of WRS at different gastric tracts did not differ (p>0.05) between the harvest stages. TDN of WRS harvested at yellow stage in Hanwoo steers was statistically (compared with milk stage) and numerically (compared with dough and mature stages) higher than TDN of the other WRS. Overall, taking present feed evaluation into consideration, WRS harvested at yellow stage may be recommended for Hanwoo steers. Further studies on in vivo rumen fermentation pattern and minimizing nutrients loss during harvest should be required for accurate feed evaluation.

Studies on Reserved Carbohydrates and Net energy Lactation ( NEL ) in Corn and Sorghum II. Synthesis and accumulation pattern of cell-wall constituents (옥수수 및 Sorghum에 있어서 탄수화물과 NEL 축적에 관한 연구 II. Cell-Wall Constituents 합성 및 축적형태)

  • ;G. Voigtlaender
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1985
  • The effects of morphological development and environmental temperature on synthesis and accumulation behavior of cell-wall constituents were studied in maize cv. Blizzard and sorghum cv. Sioux and Pioneer 931 at Muenchen Technical University from 1979 to 1981. Various growth stages of maize and sorghum plants were grown on field and phytotron at 4 temperature regimes of 30/25, 25/20, 28/18 and 18/8 degree C and mid-summer sunlight over 13-hour days. The results are summarized as follow: 1. Cell-wall constituents in sorghum and maize plants were shown to have a great synthesis rates at early growth stage from growing point differentiation to final leaf visible. The highest concentration of cell wall contents were found at heading stage with 52-54% and 64-68% of neutral detergence fiber, and 30% and 45% of acid detergence fiber foe maize and sorghum, respectively. 2. The structural carbohydrates, cellulose and hemicellulose, were found as a main components of cell-wall constituents. Cellulose were mainly accumulated in stalks, while hemicellulose were an important cell wall components in leaves and panicle. 3. Synthesis rates of cell-wall constituents and non-strnctural carbohydrates were associated with increasing of temperature. Reserved carbohydrates such as fructosan, mono - and dissaccharose in plant were, however, declined when the temperature exceeded 30 deg C, during the accumulation of cellulose, hemicellulose and lignin were increased continuously. 4. Cell-wall constituents lowered digestibility and net energy accumulation in sorghum and maize plants. In a in vitro and in vivo trial, it was found a negative correlation between digestion dry matter and cell wall constituents, especially cellulose and lignin.

  • PDF

Effects on the Rumen Microbial Fermentation Characteristics of Lignosulfonate Treated Soybean Meal (Lignosulfonate처리 대두박의 반추위 내 미생물 발효특성에 미치는 영향)

  • Lee, Hun-Jong;Lee, Seung-Heon;Bae, Gui-Seck;Park, Je-Hwan;Chang, Moon-Baek
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.413-426
    • /
    • 2010
  • This study was conducted to investigate the effects on fermentation characteristics of rumen microorganism by different types and levels of lignosulfonate treated soybean meal (LSBM) in in vitro test and rumen simulation continuous culture (RSCC) system in dairy cows. The experiment I was control and 12 treatments (each with 3 replications) in vitro test to demonstrate composition of different types of treatments with lignosulfonate (Desulfonate, Na, Ca and solution) and levels (2, 4 and 8%) of soybean meal in the dairy cow diet. LSBM source treatments in the dairy cow diet showed pH value, $NH_3$-N concentration and total VFA concentration lower than control at all levels and incubation times (p<0.05). Dry matter digestibility of LSBM source treatments showed lower than control (p<0.05). Gas production and rumen microbial synthesis was decreased by rumen microbial fermentation for incubation times. Undegradable protein (UDP) concentration of all LSBM treatments was decreased for incubation times, and significantly higher than control (p<0.05). In the experiment II compared diets of the control, LSBM Na 2%, LSBM Sol 2%, which are high performance to undegradable protein (UDP) concentration experiment I in vitro test, and heated treatment lignosulfonate (LSBM Heat) 2% in the dairy cow diet from four station RSCC system ($4{\times}4$ Latin square). A rumen microbial fermentation characteristic was stability during 12~15 days of experimental period in all treatments. The pH value of LSBM treatments was higher than control treatment (p<0.05). The $NH_3$-N concentration, VFA concentration and rumen microbial synthesis of LSBM treatments were lower than control (p<0.05). The undegradable protein (UDP) showed LSBM Na 2% (45.28%), LSBM Sol 2% (43.52%) and LSBM Heat 2% (43.49%) higher than control (41.55%), respectively (p<0.05). Those experiments were designed to improve by-pass protein of diet and milk protein in the dairy cows. We will conduct those experiments the in vivo test by LSBM treatments in dairy cows diet.