• Title/Summary/Keyword: In vivo Fermentation

Search Result 163, Processing Time 0.031 seconds

Effects of Protein and Carbohydrate Supplementations on Fibre Digestion and Microbial Population of Sheep

  • Jetana, T.;Abdullah, N.;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.510-521
    • /
    • 1998
  • The effects of two types of protein, soybean meal (SBM) and fish meal (FM); and two types of energy supplements, corn flour (CF) and paper pulp (PP), on intake of guinea grass (Panicum maximum), fibre digestion and microbial activities in four Merino rams with an average weight of $54.4{\pm}4.5kg$ were studied. Each animal was fitted with a ruminal cannula and a duodenal cannula at the proximal position. The animals were fed twice daily with chopped guinea grass (5 cm) ad libitum and one of the four dietary supplements: 170 g FM+268 g PP; 170 g FM+268 g CF; 200 g SBM+200 g PP or 200 g SBM+200 g CF. All the supplements were mixed with 100 g molasses. In sacco and in vivo digestibilities, digesta flow rates, fermentation and microbial population were studied in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of dietary treatments. The effects of energy or protein sources were not significant on grass intake of sheep. The potential degradabilities of NDF and ADF were not significantly affected by any of the supplements. However, the energy and protein sources had significant efects on disappearance rate of NDF and ADF. The disappearance rate of both NDF and ADF were significantly (p < 0.05) higher in animals fed PP when compared to animals fed CF. Animals fed FM also showed significantly (p < 0.03) higher disappearance rate of ADF than those fed SBM. Animals fed PP showed better digestion in the rumen and total tract. Total flow of NDF and ADF through the duodenum was not significantly affected by the various supplements. The mean rumen pH values (5.8-6.1) were not significantly different among the four different diets. The concentration of rumen ammonia was significantly (p < 0.0001) higher in animals fed SBM (235-266.4 mg N/L) supplement than in animals fed FM (174.9-179.7 mg N/L), while total VFA concentration was not significantly affected by both energy and protein supplements. Mean values of total VFA ranged from 72.5-82.3 mM. Molar proportions of acetate, propionate and butyrate were typical of a roughage type fermentation. Molar proportion of acetate was significantly (p < 0.0001) higher in sheep fed PP when compared to sheep fed CF. Animals fed FM had higher total viable bacterial counts, while animals fed CF showed higher protozoal numbers. Proportions of cellulolytic bacteria were only slightly higher in animals fed SBM or PP.

Effect of Fermented Brown Seaweed Waste (FBSW) on in vitro Rumen Microbial Fermentation (발효 미역부산물이 반추위 발효특성에 미치는 영향)

  • Hong, Zhong-Shan;Lee, Hong-Gu;Lee, Zhe-Hu;Jin, Yong-Cheng;Lee, Sang-Bum;Kang, Han-Suck;Choi, Yun-Jaie
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.349-356
    • /
    • 2011
  • This study was conducted to investigate the effects of brown seaweed waste (BSW) fermented with DS-01 microbe on in vitro rumen microbial fermentation. In in vitro trial, three different diets supplemented with 2%, 4%, 6% BSW fermented with DS-01 either for one month or two months was tested at 3 h, 6 h, 9 h, 12 h, and 24 h incubation. The chemical composition (CP, EE, CF, and ash) between brown seaweed waste (BSW) and fermented BSW (FBSW) were not different. The contamination of pathogenic microbes was not detected in FBSW. The pH value tended to be higher with 6% level of supplementation of FBSW for one month than other treatments. The pH at 24 h was significantly higher in FBSW than that of treatments without FBSW (p<0.05). In FBSW for two months, the pH value in 6% FBSW at 3 h in vitro fermentation tended to be higher than 2% or 4% FBSW treatments (p=0.0540), but there were no differences in other fermentation times. Although the concentration of $NH_3$-N of BSW fermented for one month was higher than control at 3 h (p<0.05), the volatile fatty acid values were significantly increased in 4 and 6% FBSW fermented for one month at 6 h incubation (p<0.05). In BSW fermented for two months, the volatile fatty acid values were significantly decreased in 6% treatment at 9 h (p<0.05). As a result of in vitro trial, it was recommended that the 2~4% supplementation level of brown seaweed waste fermented with DS-01 microbe for two months could be utilized for in vivo trial in ruminants.

In vitro investigation of food effects on human gut microbiota (In vitro 상에서 식품이 장내미생물에 미치는 영향)

  • Jeon, Dabin;Singh, Vineet;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Recent gut microbiota studies have revealed the important roles of gut microbiota for our health. Increasing numbers of health functional foods have been developed every year. Development of functional food often includes ex- and in-vivo experiment to verify the beneficial effects of the functional food. To investigate effects of functional food on gut microbiota, animal models were often conducted. Beneficial effects of food can be evaluated based on how gut microbiota was shifted by food, which results in either increase in beneficial bacteria, decrease in potentially pathogenic bacteria or both. As animal experiments are generally time-consuming and laborious, we investigate how well in-vitro investigation of fecal microbiota may reflect dietary health benefits. Here, we tested 15 kinds of diets using two human subjects' fecal materials. Our results showed varying gut microbiota shifts according to diets, which suggested generally known beneficial diets (i.e. Kimchi, Chunggukjang) increased Lactobacillus and Bifidobacterium. Therefore, we suggest that in vitro fecal microbiota analysis could be used to evaluate beneficial effects of diets. Moreover, this method may be ideal to establish personalized diet.

Effect of feeding tamarind kernel powder extract residue on digestibility, nitrogen availability and ruminal fermentation in wethers

  • Wang, Lin;Nakanishi, Takashi;Sato, Yoshiaki;Oishi, Kazato;Hirooka, Hiroyuki;Takahashi, Kei;Kumagai, Hajime
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.379-385
    • /
    • 2017
  • Objective: This study was to examine in vivo digestibility, nitrogen balance and ruminal fermentation of tamarind (Tamarind indica) kernel powder extract residue (TKPER) compared to soybean products and by-products in wethers. Methods: Four wethers with initial body weight (BW) of $51.6{\pm}5.5kg$ were assigned in a $4{\times}4$ Latin square design to investigate nutritional characteristics of TKPER, dry heat soybean (SB), dry soybean curd residue (SBCR) and soybean meal (SBM) feeding with ryegrass straw (R) at a ratio of 1:1 at 2% of BW in dry matter (DM) on a daily basis. Results: The digestibility of DM, crude protein, and ether extract (EE) of TKPER-R diet were 57.0%, 87.0%, and 86.0%, respectively. Higher non-fiber carbohydrates digestibility was observed in TKPER-R diet (83.2%) than in SB-R diet (73.9%, p<0.05). Wethers fed the TKPER-R diet had lower retention of nitrogen (N) and ruminal ammonia nitrogen ($NH_3-N$) contents at 4 h after feeding than those fed the SBM-R diet (p<0.05), which had values similar to the SB-R or SBCR-R diet. The TKPER feeding had higher propionate (C3) and lower butyrate content, as well as lower acetate to propionate ratio (C2:C3) in rumen fluid than SBM feeding at 4 h after feeding (p<0.05). Conclusion: TKPER did not bring any side effect to the wethers although it was lack of fiber, and could be used as a high protein and energy ingredient in concentrate with appropriate roughage to meet the fiber requirement for ruminants.

Oral Administration of Weissella confusa WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice (생쥐 비만모델에서 Weissella confusa WIKIM51 식이에 따른 지방합성 및 에너지 대사 조절로 인한 체지방 감소 효과)

  • Lim, Seul Ki;Lee, Jieun;Park, Sung Soo;Kim, Sun Yong;Park, Sang Min;Mok, Ji Ye;Chang, Hyunah;Choi, Hak-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • Obesity is closely associated with profound dyslipidemia, insulin resistance, and fatty liver disease. Recent reports have suggested that alterations in gut microbiota can be linked to diet-induced obesity. In this study, the anti-obesity effects of Weissella confusa WIKIM51 isolated from kimchi were investigated, as evidenced by: i) reduced lipid accumulation and downregulated adipogenesis-related genes in 3T3-L1 adipocytes; ii) suppressed gains in body weight and epididymal fat mass; iii) reduced serum lipid levels, for example, triglyceride and total cholesterol; iv) increased serum adiponectin levels and reduced serum leptin levels; v) downregulated lipogenesis and upregulated β-oxidation-related genes in the epididymal fat; and vi) altered microbial communities. The collective evidence indicate the potential value of W. confusa WIKIM51 as a functional food supplement for the prevention and amelioration of obesity.

Effects of Dietary Herbaceous Peat on In Vitro Fermentation and Milk Production in Dairy Cows (허브부식토의 사료내 첨가에 따른 In Vitro 발효특성과 젖소의 유생산성에 미치는 영향)

  • Kim, Hyeon-Shup;Park, Joong-Kook;Kim, Hong-Yun;Kim, Sang-Bum;Yang, Seung-Hak;Kim, Chang-Hyun;Ahn, Jong-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.177-190
    • /
    • 2011
  • This study was conducted to determine effects of dietary herbaceous peat on in vitro fermentation and milk production in dairy cows. Ruminal pH, gas production, VFA (volatile fatty acid), Ammonia-N, and rumen degradability were examined by the addition of three times over 0, 1, and 5% herbaceous peat with substrate of timothy hay, and the change of rumen fermentation characteristics were evaluated. In 0, 3, 12 and 24 hours cultivation, all treatments did not show a significant difference but the control at 6 hours appeared significantly lower pH compared to 1 and 5% treatments (p<0.05). The gas production of the treatments significantly increased until 12 hours of cultivation compared to control (p<0.05), the rumen ammonia concentration showed a tendency to increase until 24 hours in all treatment groups, and there was no significant difference between treatments. About the rumen degradability, 5% treatment showed higher rumen degradability in all hours than control and 1% treatment (p<0.05). Meanwhile, for in vivo trial, 16 heads of Holstein lactation dairy cows were selected for experiment for four weeks in order to research the change of milk yield, milk compositions and change of somatic cell counts of lactation dairy cows by herbaceous peat feeding. The milk yield of vitamin C and herbaceous peat treatments (T3) was 25.0 kg but the control was 23.2 kg, herbaceous peat treatment (T1) was 23.1 kg, and vitamin C treatment (T2) was 23.4 kg, so there was linear increase effect of milk yield by T3. The partial significance of the milk (fat, milk protein, lactose, MUN and SNF) and change of somatic cell count before and after experiment by the control and treatments about change of milk and somatic cell counts (p<0.05) were recognized. About change of milk in the first half (1~2 weeks) and latter half (3~4 weeks) during four weeks of experiments period, the herbaceous peat supplement treatments showed a tendency of significant decrease of quality of milk protein and SNF. The control and treatments did not show significant change of blood nutrients (total protein, cholesterol, NEFA, BUN), liver function component (AST, GGT) and minerals (Ca, P, Mg) before and after experiment. In summary, it is judged that herbaceous peat feeding for lactation dairy cows would be recommendable based on the results of milk, somatic cell count physiologically.

Effects of Different Ratios of Nonfibrous Carbohydrate to Ruminally Degradable Protein on In Vitro Fermentation and Lactation Performance of Dairy Cows (비섬유탄수화물과 반추위분해단백질의 다른 비율이 In Vitro 발효와 젖소의 산유성적에 미치는 영향)

  • Seo, I.J.;Lee, D.H.;Lee, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.625-636
    • /
    • 2005
  • This study was conducted to determine effects of different ratios (3.5, 3.0 and 2.5) of nonfibrous carbohydrate (NFC) to ruminally degradable protein (RDP) on in vitro fermentation and lactation performance of dairy cows and optimum ratio of NFC to RDP in dairy rations. In vitro trial was conducted up to 12 hr with ruminal fluidtaken from ruminally cannulated Holstein cows. The level of dietary NFC did not affect ruminal pH. The ammonia-N concentration was not significantly different among treatments until 6 hr incubation, however, it was significantly (P < 0.05) decreased as the ratio of dietary NFC to RDP increased on 9 and 12 hr incubation. For volatile fatty acids, concentrations of both acetate and propionate were significantly (P < 0.05) increased on 3 hr incubation as dietary NFC contents of treatments increased, in other incubation times, they had no significant differences among treatments. Valerate and A:P ratio were not affected by the ratio of NFC to RDP. Isoacids and total VFAs were significantly (P < 0.05) increased with increasing dietary NFC contents and their values were highest in the treatment of 3.0 ratio. Meanwhile, for in vivo trial, 18 Holstein lactating cows were allotted to treatments in three groups of 6 cows. They were employed for 24 weeks to investigate nutrient intakes, and milk yield and composition according to different ratios of dietary NFC to RDP. Intakes of dry matter and energy were significantly (P < 0.01) increased, but NDF intake was significantly (P < 0.01) decreased as the ratio of dietary NFC to RDP increased. Milk yield for the ratio of 3.5 (32.7 kg) was significantly (P < 0.05) higher than those of other treatments. Milk fat (%) was significantly (P < 0.05) higher for the treatments of 3.0 (3.79 %) and 2.5 (3.79 %) than that (3.48 %) for the ratio of 3.5, but milk fat yield was not different among treatments. Contents and yields for milk protein and solids-not fat were linearly (P < 0.01) increased as the ratio of dietary NFC to RDP increased. However, milk urea nitrogen concentration was significantly (P < 0.05) decreased with increasing dietary NFC levels. Our results showed that the increasing level of NFC in the diet of dairy cows enhanced ruminal fermentation, N utilization and milk production and suggested that maximal fermentation and lactation performance were achieved when the dietary ratio of NFC to RDP was more than 3.0 in dairy rations.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Potential to mitigate ammonia emission from slurry by increasing dietary fermentable fiber through inclusion of tropical byproducts in practical diets for growing pigs

  • Nguyen, Quan Hai;Le, Phung Dinh;Chim, Channy;Le, Ngoan Duc;Fievez, Veerle
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.574-584
    • /
    • 2019
  • Objective: Research was conducted to test the effect of including fiber-rich feedstuffs in practical pig diets on nutrient digestibility, nitrogen balance and ammonia emissions from slurry. Methods: Three Vietnamese fiber sources were screened, namely cassava leaf meal (CL), cassava root residue (CR), and tofu by-product (TF). Accordingly, a control diet (Con) with 10% of dietary non-starch polysaccharides (NSP) and three test diets including one of the three fiber-rich feedstuffs to reach 15% of NSP were formulated. All formulated diets had the same level of crude protein (CP), in vitro ileal protein digestible and metabolisable energy, whereas the in vitro hindgut volatile fatty acid (VFA) production of the test diets was 12% to 20% higher than the control diet. Forty growing barrows with initial body weight at $28.6{\pm}1.93kg$ ($mean{\pm}standard$ deviation) were allocated to the four treatments. When pigs reached about 50 kg of body weight, four pigs from each treatment were used for a nitrogen balance trial and ammonia emission assessment, the remaining six pigs continued the second period of the feeding trial. Results: The TF treatment increased fecal VFA by 33% as compared with the control treatment (p = 0.07), suggesting stimulation of the hindgut fermentation. However, urinary N was not significantly reduced or shifted to fecal N, nor was slurry pH decreased. Accordingly, ammonia emissions were not mitigated. CR and CL treatments failed to enhance in vivo hindgut fermentation, as assessed by fecal VFA and purine bases. On the contrary, the reduction of CP digestibility in the CL treatment enhanced ammonia emissions from slurry. Conclusion: Dietary inclusion of cassava and tofu byproducts through an increase of dietary NSP from 10% to 15% might stimulate fecal VFA excretion but this does not guarantee a reduction in ammonia emissions from slurry, while its interaction with protein digestibility even might enhance enhanced ammonia emission.

Effects of Hibiscus syriacus Extracts on Antioxidant Activities and Blood Circulation Improvement (무궁화 추출물의 항산화 활성 및 혈액 순환 개선에 미치는 효과)

  • Shin, Yu-Bin;Ha, Bae-Jin
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1415-1421
    • /
    • 2016
  • This study was worked to investigate the antioxidant activity and the blood circulation improvement effect of two Hibiscus syriacus extracts divided into fermented H. syriacus extract and non-fermented H. syriacus extract. As the results of in vitro experiment, both of fermented H. syriacus extract and non-fermented H. syriacus extract had the DPPH free radical scavenging effect and the high contents of polyphenol and flavonoid known as antioxidant components in dose-dependent manner. Six weeks female C57BL/6 mice were divide into four groups and fed high diets for 28 days. Also fermented H. syriacus extract and non-fermented H. syriacus extract was daily intraperitoneal administration for 28 days at 2 mg/kg of body weight of mice. In vivo C57BL/6 mice experiment of normal diet group (NOR), high-fat diet group (CON), high-fat diet plus fermented H. syriacus extract group (FHS) and high-fat diet plus non-fermented H. syriacus extract group (NFHS), each of total cholesterol, triglyceride and low density lipoprotein (LDL) was decreased in both of FHS and NFHS groups, meanwhile high density lipoprotein (HDL) was increased (p<0.01). Conclusion, the results confirmed that H. syriacus containing the high contents of the antioxidant activity components had the significant effects of blood circulation improvement.