• 제목/요약/키워드: In vitro screening

검색결과 583건 처리시간 0.029초

Cytotoxicity of a Novel Biphenolic Compound, Bis(2-hydroxy-3-tert-butyl-5-methylphenyl)methane against Human Tumor Cells In vitro

  • Choi, Sang-Un;Kim, Kwang-Hee;Kim, Nam-Young;Choi, Eun-Jung;Lee, Chong-Ock;Son, Kwang-Hee;Kim, Sung-Uk;Bok, Song-Hae;Kim, Young-Kook
    • Archives of Pharmacal Research
    • /
    • 제19권4호
    • /
    • pp.286-291
    • /
    • 1996
  • Phenolic compounds are prevalent as toxins or environmental pollutants, but they are also widely used as drugs for various purpose including anticancer agent. A novel biphenolic compound, bis(2-hydroxy-3-tert-butyl-5-methylphenyl)methane (GERI-BPO02-A) was isolated from the fermentation broth of Aspergillus fumigatus F93 previously, and it has revealed cytotoxicity against human solid tumor cells. Its effective doses that cause 50% inhibition of cell growth in vitro against non-small cell lung cancer cell A549, ovarian cancer cell SK-OV-3, skin cancer cell SK-MEL-2 and central nerve system cancer cell XF498 were 8.24, 10.60, 8.83, $9.85\mug/ml$ respectively. GERI-BPO02-A has also revealed cytotoxicity against P-glycoproteinexpressed human colon cancer cell HCT15 and its multidrug-resistant subline HCT15/CL02, and its cytotoxicity was not affected by P-glycoprotein. We have also tested cytotoxicities of structurally related compounds of GERI-BPO02-A such as diphenylmethane, 1,1-bis(3,4dimethylphenyl)ethane, 2,2-diphenylpropane, 2-benzylpyridine, 3-benzylpyridine, $4,4^I-di-tert-butylphenyl$, bibenzyl, $2,2^I-dimethylbibenzyl$, cis-stilbene, trans-stilbene, 3-tert-butyl-4-hydroxy-5-methylphenyisulfide, sulfadiazine and sulfisomidine for studying of structure and activity relationship, and from these data we could suppose that hydroxyl group of GERI-BPO02A conducted important role in its cytotoxicity.

  • PDF

Screening of Natural Products for Endothelial and Renal Nitric Oxide Production

  • Kim, Hyeyoung;Han, Sang-Won
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.90-90
    • /
    • 1997
  • Natural products, which have been used for the treatment of hypertension, diuresis and nephritis in traditional oriental medicine, were selected for the screening of nitric oxide (NO) production in endothelial cells and kidney tissues in vitro as well as in vivo by measuring the conversion of [$\^$14/C]-L-arginine to [$\^$14/C]-L-citrulline, a coproduct of the enzyme reaction with NO. Confluent monolayer of endothelial cells were used for the screening of 16 natural products. Among the natural products, Zizyphus jujuba and Codonopsis pilosula stimulated endothelial NO synthase activity. Thus, both confluent monolayer of endothelial cells and kidney homogenates (glomeruli, cortical tubules, meudllae) were treated with Zizyphus jujuba and Codonopsis pilosula (final concentration 10 $\mu\textrm{g}$/$m\ell$) and NO releases were compared with those by receptor - dependent agonists, bradykinin and ADP and receptor - independent calcium ionophore A23187 in vitro. In rat experiment, NO releases in glomeruli, cortical tubules and medullae and plasma renin activity were assessed after intraperitoneal injection of Zizyphus jujuba and Codonopsis pilosula (10 mg/kg/day for 4 days). As a result, both Zizyphus jujuba and Codonopsis pilosula significantly increased NO releases in cultured endothelial cells, kidney tissues in vitro as well as in vivo. Stimulation of NO releases by Zizyphus jujuba and Codonopsis pilosula was similar to those by receptor - dependent agonists, bradykinin and ADP and receptor - independent calcium ionophore A23187 in cultured endothelial cells. However, plasma renin activity was not influenced by these two natural products. In conclusion, stimulatory effects of Zizyphus jujuba and Codonopsis pilosula on NO release in kidney may contribute their hypotensive effects and antinephritic action possibly by increasing renal blood flow.

  • PDF

생약으로부터 In vitro DNA 결합활성의 검색 (Screening of In vitro DNA-binding Activity from the Crude Drugs)

  • 김윤설;정세준;신화우;김윤철
    • 약학회지
    • /
    • 제42권2호
    • /
    • pp.144-148
    • /
    • 1998
  • One hundred and seventeen crude drugs were screened for DNA-binding activity in vitro. The DNA-methyl green assay is a useful biochemical screen for the detection or development of biologically active compounds which bind to DNA. This assay is based upon the fact that free methyl green undergoes rapid spontaneous molecular rearrangement to its colorless carbinol base so that the liberation of the dye from DNA by displacement can be followed spectrophotometrically as a decrease in absorbance at 65Onm. Seven methanolic extracts of crude drugs including Cinnamomi Cortex spissus, Coicis Semen, Coptidis Rhizoma, Perillae Semen, Plantaginis Semen, Polygalae Radix and Zanthoxyli Fructus showed less than 2,000${\mu}$g/ml as their $IC_{50}$ values. The active principles of Plantaginis Semen and Zanthoxyli Fructus were transferred into organic solvents, which showed the $IC_{50}$ values with 588 and 574${\mu}$g/ml, respectively. These fractions have been selected for isolation of biologically active constituents.

  • PDF

Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing

  • Lee, Hye Kyoung;Choi, Sun-Hae;Lee, Cho Rong;Lee, Sun Hee;Park, Mi Ri;Kim, Younghoon;Lee, Myung-Ki;Kim, Geun-Bae
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.91-100
    • /
    • 2015
  • The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities.

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen;Gangola, Manu P.;Kutcher, H. Randy;Hucl, Pierre;Ganeshan, Seedhabadee;Chibbar, Ravindra N.
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.558-569
    • /
    • 2020
  • Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

Effects of paternal age on human embryo development in in vitro fertilization with preimplantation genetic screening

  • Kim, Min Kyoung;Park, Jae Kyun;Jeon, Yunmi;Seok, Su Hee;Chang, Eun Mi;Lee, Woo Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.22-29
    • /
    • 2019
  • Objective: As paternal age increases, the quality of sperm decreases due to increased DNA fragmentation and aneuploidy. Higher levels of structural chromosomal aberrations in the gametes ultimately decrease both the morphologic quality of embryos and the pregnancy rate. In this study, we investigated whether paternal age affected the euploidy rate. Methods: This study was performed using the medical records of patients who underwent in vitro fertilization (IVF) procedures with preimplantation genetic screening (PGS) from January 2016 to August 2017 at a single center. Based on their morphological grade, embryos were categorized as good- or poor-quality blastocysts. The effects of paternal age were elucidated by adjusting for maternal age. Results: Among the 571 total blastocysts, 219 euploid blastocysts were analyzed by PGS (38.4%). When the study population was divided into four groups according to both maternal and paternal age, significant differences were only noted between groups that differed by maternal age (group 1 vs. 3, p= 0.031; group 2 vs. 4, p= 0.027). Further analysis revealed no significant differences in the euploidy rate among the groups according to the morphological grade of the embryos. Conclusion: Paternal age did not have a significant impact on euploidy rates when PGS was performed. An additional study with a larger sample size is needed to clarify the effects of advanced paternal age on IVF outcomes.

Characterization of the KG1a Cell Line for Use in a Cell Migration Based Screening Assay

  • Bernhard O. Palsson;Karl francis;Lee, Gyun-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.178-184
    • /
    • 2002
  • High-throughput screening has become a popular method used to identify new “leads”for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of various in-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially glowing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.

약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작 (Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells)

  • 김동수;이동원
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.