• 제목/요약/키워드: In vitro regeneration

검색결과 530건 처리시간 0.027초

In Vitro Propagation of Commonly Used Medicinal Trees in Korea

  • An, Chanhoon
    • Journal of Forest and Environmental Science
    • /
    • 제35권4호
    • /
    • pp.272-280
    • /
    • 2019
  • Forest medicinal resources, which constitute one of the non-timber forest products, have been regarded as healthy and highly valued products. To meet the increasing demand of the medicinal resources, it is necessary to improve the propagation methods of medicinal plants. In vitro propagation not only allows an opportunity for propagating plants in large numbers but also allows for enhancing the quality and quantity of the desired functional component of a plant by altering the growth factors, such as medium, carbon source, and plant growth regulators influence plant. There have been several studies of in vitro propagation methods, such as axillary bud culture, shooting, and embryogenesis, on Kalopanax septemlobus, Eleutherococcus sessiliflorus, Hovenia dulcis, and Schisandra chinensis in Korea between from 2000 through 2010. Furthermore, there have been attempts to proliferate callus and plantlets for producing useful natural compounds by using bioreactors. Here, we provide an account of the in vitro propagation methods of medicinal trees in Korea based on a review of several micropropagation studies.

In Vitro Propagation of Medicinal Herbs in Korea

  • An, Chanhoon;Song, Jeongho
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.77-81
    • /
    • 2018
  • Mass production of forest medicinal plants is related to quality control of raw medicinal materials. Plant tissue culture is an important technology to produce high-quality plant materials. Numerous factors are reported to influence the success of in vitro regeneration of medicinal plants. Embryogenesis is known to be the most effective techniques and it has developed in some medicinal plant species. Various in vitro cultural condition for direct and/or indirect somatic embryogenesis systems have developed in Epimedium koreaum, Bupleurum falcatum, Paeonia lactiflora, Chrysanthemum zawadskii, Houttuynia cordata etc. In this study, we provide the present statue and information of in vitro propagation techniques that is able to apply as an efficient system for rootstock propagation system of forest medicinal plants.

반하(半夏) 캘러스로부터 식물체(植物體) 재생(再生)과 기내(器內) 괴경(塊莖) 생장(生長) 유도(誘導) (Plant Regeneration and in vitro Tuber Enlargement from Callus in Pinellia ternata(Thunb.) Breit)

  • 김태수;박문수;박호기;김선;장영선
    • 한국약용작물학회지
    • /
    • 제2권3호
    • /
    • pp.246-250
    • /
    • 1994
  • 반하(半夏)의 엽절편(葉切片)을 배양(培養)하여 유도(誘導)한 Callus로부터 식물재분화(植物再分化)에 미치는 온도(溫度)와 광조건(光條件) 그리고 기내(器內) 괴경(塊莖) 비대(肥大)를 위한 배지내(培地內) 실소원(室素源)의 영향(影響) 등에 대하여 검토(檢討)한 결과(結果)는 다음과 같다. 1. 엽절(葉切)으로부터의 Callus 형성(形成)과 기관분화(器官分化)에는 2, 4-D 또는 NAA의 첨가(添加)가 IAA 첨가(添加)보다 좋았으며, 배양조건(培養條件)으로는 $26^{\circ}C$에서 8시간(時間)/ 일(日), 명배양(明培)하는 것이 효과적(效果的)이었다. 2. Callus로부터 식물체(植物體)를 재분화하기 위한 적정배지(適正培地)는 MS 배지(培地)에 BA $2mg/{\ell}$를 첨가(添加)하였을 때 좋았으며, 배양환경(培養環境)은 $26^{\circ}C$에서 $16{\sim}24$시간(時間)/일(日) 명배양(明培養)시키는 것이 좋았다. 3. 배지내(培地內)에 $KNO_3\;3.0g/{\ell}$처리(處理)하였을 때 식물체(植物體) 재분화배지(再分化培地) MS+BA $2mg/{\ell}$에 비하여 기내괴경(器內塊莖)의 비대(肥大)가 2.5배(培) 이상(以上)에 달하였다.

  • PDF

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.

Distance of insertion points in a mattress suture from the wound margin for ideal primary closure in alveolar mucosa: an in vitro experimental study

  • Lee, Won-Ho;Kuchler, Ulrike;Cha, Jae-Kook;Stavropoulos, Andreas;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • 제51권3호
    • /
    • pp.189-198
    • /
    • 2021
  • Purpose: This study was conducted to determine how the distance of the near insertion points in a vertical mattress suture from the wound margin influences the pattern of primary closure in an in vitro experimental model. Methods: Pairs of 180 porcine gingival and alveolar mucosa samples were harvested from 90 pig jaws and fixed to a specially designed model. A vertical mattress suture was performed with the near insertion point at 3 different distances from the wound margin (1-, 3-, and 5-mm) on both the gingival and mucosal samples (6 groups; n=30 for each group). The margin discrepancy and the presence of epithelium between the wound margins were measured on histologic slides. Results: The margin discrepancy decreased significantly as the near insertion point became closer to the wound margin both in mucosal tissue (0.241±0.169 mm, 0.945±0.497 mm, and 1.306±0.773 mm for the 1-, 3-, and 5-mm groups, respectively) and in gingival tissue (0.373±0.304 mm, 0.698±0.431 mm, and 0.713±0.691 mm, respectively). The frequency of complications of wound margin adaptation reduced as the distance of the near insertion point from the wound margin decreased both in the mucosal and gingival tissues. Conclusions: Placing the near insertion point close to the wound margin enhances the precision of wound margin approximation/adaptation using a vertical mattress suture.

An Efficient Plant Regeneration System for Sorghum bicolor - a Valuable Major Cereal Crop

  • Baskaran P.;Jayabalan N.
    • Journal of Plant Biotechnology
    • /
    • 제7권4호
    • /
    • pp.247-257
    • /
    • 2005
  • An efficient, rapid and large-scale in vitro clonal propagation of agronomically important Indian cereal crop genotypes (NSH27 & K5) of Sorghum bicolor (L.) Moench. by enhanced shoot proliferation in shoot tip segments was designed. MS medium fortified with plant growth regulators and coconut water markedly influenced in vitro propagation of Sorghum bicolor. In vitro plantlet production system has been investigated on Murashige and Skoog (MS) medium with the synergistic combination of 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), 5% coconut water and 3% sucrose which promoted the maximum number of shoots as well as beneficial shoot length. Subculturing of shoot tip segments on a similar medium enabled continuous production of more than 100 healthy shoots with similar frequency. When the healthy shoot clumps were cultured on MS medium fortified with 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), ${\alpha}$-naphthaleneacetic acid ($2.7\;{\mu}M$), ascorbic acid ($30.0\;{\mu}M$) and 5% coconut water, a rapid production of axillary and adventitious buds was developed after 8 wk culture. More than 300 shoots were produced 10 wk after culture. Rooting was highest (100%) on half strength MS medium containing 22.8 mM IAA. Micropropagated plants established in garden soil, farmyard soil and sand (2:1:1) were uniform and identical to the donor plant with respect to growth characteristics. These plants grew normally without showing any traits.

Efficient and Reliable in vitro Regeneration System for Rubus Species as the Basis of Genetic Engineering

  • Kalai Katalin;Meszaros Annamaria;Denes Ferenc;Zatyko Jozsef;Balazs Ervin
    • Journal of Plant Biotechnology
    • /
    • 제7권4호
    • /
    • pp.241-246
    • /
    • 2005
  • Factors affecting regeneration of different Rubus varieties (blackberry, raspberry and their hybrid) were examined and a reliable regeneration system was established. Media for stock plant maintenance were tested; different explants and media were investigated to find the best circumstances for the regeneration. The effect of the commonly used antibiotics was studied to determine the most suitable one for selection of the transformants. We found that both MS and LS media supplemented by $20\;gL^{-1}$ sucrose are suitable for the stock plant maintenance. The optimal hormone content for the stock plants is $0.125\;mgL^{-1}$ 6-benzylaminopurine (BAP) with $0.01\;mgL^{-1}$ indole-3- butyric acid (IBA). The highest regeneration rate was observed on medium containing MS salts with B5 vitamins complemented with glucose, sucrose, maltose, $10\;gL^{-1}$ each, supplemented with benzylaminopurine riboside (BAR) ($2\;mgL^{-1}$) and indole-3-acetic acid (IAA) ($0.1\;mgL^{-1}$). The regenerated shoots appeared directly from the cut edges, without callus phase. Hygromycin and geneticin proved to be good selection agents for the Rubus explants, but due to their severe effect on the tissues we propose to use marker-free constructions for the transformation.