• Title/Summary/Keyword: In vitro regeneration

Search Result 530, Processing Time 0.022 seconds

Effect of Natural Additives on In Vitro Growth Medium of Strawberry 'Seolhyang' (배지내 천연유기물 첨가가 딸기 "설향" 배양묘 기내 생육에 미치는 영향)

  • Kwon, Young Hee;Lee, Joung Kwan;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Huh, Yoon Sun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.55-55
    • /
    • 2019
  • Strawberry which is the genus Fragaria under family Rosaceae is one of the most important fruit plants for both fresh consumption and food processing in the temperate and subtropical countries. Propagation of strawberry is achieved either through runners or by in vitro micropropagation. Meristem tips, generally obtained from runners of virus-free plants, are commonly used to establish in vitro cultures, which are employed for mass propagation or as a source of plant material for regeneration and transformation experiments. This study was conducted to determine the optimal natural additives strength to improve sprouting shoot rate of apical meristem of strawberry 'Seolhyang'. Strawberry apical meristem at size (0.2 mm to 0.3 mm) with leaf primordials were cultured on the 1/3MS(Murashige & Skoog) medium supplemented with five natural additives such as coconut milk, maple sap, banana powder and peptone. The sprouting ratio and growth characteristics were evaluated after eight weeks after in vitro culture. Shoot ratio of 'Seolhyang' apical meristem was 72.9% in 1/3MS medium supplemented with maple sap. On the other hand, the low shoot ratio was observed 47.7% in 1/3MS medium supplemented with banana powder. Shoot length was different as natural additives but numbers of leaf was not significantiy different among the natural additives. As a result, the sprouting ratio and plant growth were enhanced effectively in 1/3MS medium with maple sap compared to the others.

  • PDF

Investigation of the cytotoxicity of thermoplastic denture base resins

  • Lee, Jung-Hwan;Jun, Soo-Kyung;Kim, Si-Chul;Okubo, Chikahiro;Lee, Hae-Hyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.453-462
    • /
    • 2017
  • PURPOSE. The purpose of this study was to investigate the in vitro cytotoxicity of thermoplastic denture base resins and to identify the possible adverse effects of these resins on oral keratinocytes in response to hot water/ food intake. MATERIALS AND METHODS. Six dental thermoplastic resin materials were evaluated: three polyamide materials (Smile tone, ST; Valplast, VP; and Luciton FRS, LF), two acrylic materials (Acrytone, AT; and Acryshot, AS), and one polypropylene resin material (Unigum, UG). One heat-polymerized acrylic resin (Vertex RS, RS) was chosen for comparison. After obtaining extracts from specimens of the denture resin materials (${\phi}=10$ mm and d=2 mm) under different extraction conditions ($37^{\circ}C$ for 24 hours, $70^{\circ}C$ for 24 hours, and $121^{\circ}C$ for 1 hour), the extracts (50%) or serial dilutions (25%, 12.5%, and 6.25%) in distilled water were co-cultured for 24 hours with immortalized human oral keratinocytes (IHOKs) or mouse fibroblasts (L929s) for the cytotoxicity assay described in ISO 10993. RESULTS. Greater than 70% viability was detected under all test conditions. Significantly lower IHOK and L929 viability was detected in the 50% extract from the VP ($70^{\circ}C$) and AT ($121^{\circ}C$) samples (P<.05), but only L929 showed reduced viability in the 50% and 25% extract from LF ($37^{\circ}C$) (P<.05). CONCLUSION. Extracts obtained from six materials under different extraction conditions ($37^{\circ}C$, $70^{\circ}C$, and $121^{\circ}C$) did not exhibit severe cytotoxicity (less than 70% viability), although their potential risk to oral mucosa at high temperatures should not be ignored.

Effect of Medium Composition on in Vitro Shoot Regeneration from Leaves of Cassava (Manihot esculenta Crantz) Through Somatic Embryogenesis and Callus Induction (카사바 잎 절편 유래 체세포배 배양시 배지조성이 기내 식물체 재분화에 미치는 영향)

  • Young Hee Kwon;Joung Kwan Lee;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.19-19
    • /
    • 2020
  • The Cassava(Manihot esculenta Crantz) is a tropical root crop, originally from Amazonia, that provides the staple food of an estimated 800 million people worldwide. It belongs to the family Euphorbiaceae which also includes rubber (Hevea brasiliensis) and castor bean (Ricinus communis). Among tropical crops, rice, sugarcane, maize and cassava are the most important sources of calories for human consumption. Problems in the propagation of cassava are virus diseases and low rates of seed germination. So we tried to optimize protocols for mass production of somatic embryo amenable to large-scale vegetative propagation of Cassava. After in vitro eight-week culture of leaves of Cassava, the medium which contained the 2,4-D, BAP and IBA showed the highest callus induction rate, embryogenesis callus formation rate and somatic embryo formation in Cassava culture. In the medium with GA3 and myo-inositol, shoots were most vigorously regenerated from somatic embryos of Cassava. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

Evaluation of biodegradability and tissue regenerative potential of synthetic biodegradable membranes (수종의 성분해성 차폐막의 생체분해도 및 조직 재생유도 능력에 관한 연구)

  • Kim, Dong-Kyun;Ku, Young;Lee, Young-Moo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.151-163
    • /
    • 1997
  • The purpose of this study was to evaluate on the biodegradability, biocompatibility and tissue regenerative capacity of synthetic biodegradable $mernbranes-Resolut^{(R)}$, $Guidor^{(R)}$ and $Biomesh^{(R)}$. To evaluate the cell attachment on the membranes, in vitro, the number of gingival fibroblasts attached to each membrane was counted by hemocytometer. Cytotoxicity test for the membranes was performed by MTT test with gingival fibroblast For evaluation of guided- bone regenerative potential, the amount of new bone formation in the rat calvarial defects(5mm in diameter) beneath the membranes was observed for two weeks and examined of the specimens by Massons trichrome staining. Biodegradability was observed for 2, 4, 8 and 12 weeks after implantation of each materials under the skin of rats and examined the specimens with H & E staining. The number of cell attachment were the greatest in $Biomesh^{(R)}$ and followed by $Resolut^{(R)}$. Cell viability of three membranes was almost similar levels. Biodegradability of $Resolut^{(R)}$ was the highest among three membrane and the potential of guided bone regeneration was the greatest in the $Biomesh^{(R)}$ and $Resolut^{(R)}$ was followed. These results suggested that commercially available biodegradable membranes were non-toxic and highly potential to guided bone regeneration.

  • PDF

High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant

  • Deore, Ajay C.;Johnson, T. Sudhakar
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog's (MS) medium supplemented with thidiazuron (TDZ) ($2.27{\mu}M$), 6-benzylaminopurine (BA) ($2.22{\mu}M$) and indole-3-butyric acid (IBA) ($0.49{\mu}M$). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA ($4.44{\mu}M$), kinetin (Kn) ($2.33{\mu}M$), indole-3-acetic acid (IAA) ($1.43{\mu}M$), and gibberellic acid ($GA_3$) ($0.72{\mu}M$). Well-developed shoots were rooted on MS medium supplemented with IBA ($0.5{\mu}M$) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.

Multiple shoot induction and plant regeneration from axillary buds of Magnolia 'Vulcan'

  • Kim, Tae-Dong;Kim, Ji-Ah;Lee, Na-Nyum;Choi, Chang-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • An efficient protocol for multiple shoot induction and plant regeneration from axillary bud culture of Magnolia 'Vulcan' was developed in the present study. Primary shoots were obtained from axillary bud explants cultured on Murashige and Skoog (MS) medium containing 1.0 mg/L 6-benzylaminopurine (BA). To induce multiple shoots effectively, primary shoot tips were cultured on MS medium supplemented with different concentrations of BA and zeatin at 0, 0.2, 0.5, and 1.0 mg/L. Of these treatments, the MS medium with 0.5 mg/L BA resulted in the highest number of shoots per explant with an average value of 5.9, and it produced the greatest shoot height at 4.8 cm after 12 weeks of culturing. In the rooting of in vitro produced shoots, the greatest percentage of explants forming roots (91.3%), number of roots per explant (9.7), and root length (2.8 cm) were obtained in half-strength MS medium supplemented with 6.0 mg/L indole-3-butyric acid (IBA). Regenerated plantlets were successfully acclimatized and hardened off inside the culture room with 87.5% survival rate. Plants were transferred to a greenhouse with a 97.2% survival rate. The highly efficient shoot multiplication and plant regeneration system reported herein can be used for large-scale clonal propagation of valuable Magnolia species or cultivars.

In vitro propagation of endangered species, Hylotelephium ussuriense (Kom.) H. Ohba (멸종위기종 둥근잎꿩의비름 (Hylotelephium ussuriense (Kom.) H. Ohba)의 기 내 증식)

  • Bae, Kee-Hwa;Yoo, Kyoung-Hwa;Kim, Ji-Ah;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • To establish the system of in vitro plant regeneration, the different explants (stem with axillary bud and stem without axillary bud) of Hylotelephium ussuriense were cultured on the Murashige and Skoog's medium containing 6-benzylaminopurine (BA) and indolebutyric acid (IBA). The adventitious shoot induction was more effective in the stem with axillary bud explants than the stem without axillary bud explants, and was the best on MS medium containing 3.0 mg/L BA and 0.01 mg/L IBA. Frequency of plantlet growth was not significantly treated on MS and sucrose. Total chlorophyll contents under ventilation treatment were higher than those in control (non-ventilation). This in vitro propagation protocol will be useful for conservation and mass propagation of this endangered plant.

Effect of nitrogen sources and 2, 4-D treatment on indirect regeneration of ginger (Zingiber officinale Rosc.) using leaf base explants

  • Mehaboob, Valiyaparambath Musfir;Faizal, Kunnampalli;Raja, Palusamy;Thiagu, Ganesan;Aslam, Abubakker;Shajahan, Appakan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • Ginger is an important monocotyledonous plant belonging to the family Zingiberaceae. The objective of this study was to investigate the regeneration potential of ginger using leaf base explants. Auxins such as 2, 4-D and NAA in combination with BA were used for initiation of callus. Different combinations of both ammonium ($NH^{4+}$) and nitrate ($NO^{3-}$) were also studied for efficient callus production. High frequency of white friable calli was observed on modified Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 2, 4-D, 0.5 mg/L NAA and 0.5 mg/L BA. The highest shoot induction (92.33%), shootlets number ($7.33{\pm}0.33$) and length ($88.33{\pm}4.40$) mm were achieved on MS media containing 0.5 mg/L BA. Regenerated shoots were transferred to in vitro rooting media containing 1.0 mg/L IBA. Afterwards, plantlets with well-developed root and shoot system were subjected to a twostep hardening process. 71% of plantlets survived after secondary hardening without any abnormal morphology.

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim;Kyeong-Bae Jeon;Hyo-Min Park;Jinju Kim;Chae-Min Lim;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.506-515
    • /
    • 2024
  • Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

Callus and Micro-Crown Bud Formation in Vitro from Leaf Explant of Yacon (Polymnia sonchifolia Poeppig & Endlicher) (야콘 (Polymnia sonchifolia Poeppig & Endlicher) 잎의 절편체로부터 캘러스 및 기내 소관아 형성)

  • 두홍수;권태호;박철형;류점호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • The explants of yacon (Polymnia sonchifolia Poeppig & Endlicher) were cultured to invest th8e dedifferentiation condition, and formative callus from leaf was cultured to find the regeneration and micro-crown bud formation. Basal MS medium was more effective to form callus than 1/2 MS and B$_{5}$ medium. Calli formations from leaf, petiole and lateral bud were more effective on MS medium supplemented with 1.0, 2.0 mg/L 2,4-D and 0.2, 0.4 mg/L kinetin or BA than 1.0, 2.0 mg/L NAA and 0.2, 0.4 mg/L kinetin or BA. Formative callus from leaf was proliferated about 70% on medium supplemented with 1.0 mg/L BA. When callus was proliferated, 63% regeneration rate was shown on medium supplemented with 1.0, 2.0 mg/L BA in case of subculture for 3~4 months but was not shown on medium supplemented with 1.0, 2.0 mg/L kinetin. Micro-crown bud formed as addition of BA at 3~4 months after callus culture and then was obtained many at 5~6 months, it was most formed about 82% on medium supplemented with 5 mg/L BA. Rate of micro-crown bud formation was increased as more over 5 mg/L BA concentration, when this time, however, shoot had thick leaves and short internodes, and then withered before long, Micro-crown bud was formed about 88.0% on medium supplemented with 5% sucrose, that was more increased 28% than with 3% sucrose. The buds of crown bud between harvested in field and formed in vitro were difference only in size, but both were similar in shape according to histological view.

  • PDF