• Title/Summary/Keyword: In vitro irradiation

Search Result 243, Processing Time 0.045 seconds

Induction of micronuclei in human, rabbit and dog lymphocytes irradiated in vitro with gamma radiation (사람, 토끼 및 개 유래 말초혈액 림프구의 미소핵을 이용한 방사선 피폭의 생물학적 선량측정)

  • Ryu, Si-yun;Kang, Bit-na;Kim, Ho-jun;Kim, Tae-hwan;Jeong, Kyu-sik;Kim, Se-ra;Lee, Hae-june;Kim, Sung-ho;An, Mi-Young
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The frequencies of gamma-ray-induced micronuclei (MN) in cytokinesis-blocked (CB) lymphocytes at several doses were measured in three donors of three species (human, rabbit, dog). Measurements performed after irradiation showed a dose-related increases in MN frequency in each of the donors studied. When analysed by linear-quadratic model the line of best fit was : human : $y=0.1184D+0.01867D^2+0.01$, rabbit : $y=0.0387D+0.00528D^2+0.01$ (y = number of MN/CB cells and D = irradiation dose in Gy). The relative sensitivity of rabbit lymphocytes compared with human lymphocytes was estimated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 Gy to 4 Gy. In the case of MN frequency with 0.2, the relative sensitivities of rabbit lymphocytes was 0.39. These data indicate that the induction of MN in rabbit CB cells following irradiation was much less sensitive to the MN induction effects of gamma-irradiation than those from human. The MN assay with dog lymphocytes was very difficult and time-consumed because the dog PHA-stimulated lymphocytes yielded cultures with very low level of CB cells formation in the condition of this experiment. Our in vitro radiobiological study confirmed that the cytogenetic response obtained in blood from rabbit can be utilized for application in environmental studies.

in vitro and in vivo Photodynamic Activity Study of U-87 Human Glioma Cell with Photofrin (실험관 및 생체내에서 U-87 교모세포종 세포주의 광역학 치료 효과에 대한 연구)

  • Cho, Woo Jin;Cho, Kyung-Keun;Ji, Cheol;Park, Sung Chan;Park, Hea Kwan;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.5
    • /
    • pp.553-560
    • /
    • 2001
  • Objective : The objective of this study was to determine the photodynamic therapeutic response of U-87 human glioma cell in vitro as well as in the nude rat xenograft model using photofrin as photosensitizer. Material and Method : U-87 cells were cultured on 96-well culture plates, photofrin(Quadralogic Technologies Inc., Vancouver, Canada) was added into the cell culture medium at concentration of $1{\mu}g/ml$, $2.5{\mu}g/ml$, $5{\mu}g/ml$, $10{\mu}g/ml$ and $20{\mu}g/ml$. 24 hour after drug treatment, cells were treated with optical(632nm) irradiation of $100mJ/cm^2$, $200mJ/cm^2$ and $400mJ/cm^2$. Photofrin(12.5mg/kg, i.p.) was administered to 28 nude rats containing intracerebral U-87 human glioma as well as 26 normal nude rats. 48 hours after administration, animals were treated with optical irradiation(632nm) of $35J/cm^2$, $140J/cm^2$ and $280J/cm^2$ to exposed tumor and normal brain. The photofrin concentration was measured in tumor and normal brain in a separate population of animals. Results : By MTT assay, there was 100% cytotoxicity at any dose of photofrin with optical irradiation of $200mJ/cm^2$ and $400mJ/cm^2$. But at the optical irradiation of $100mJ/cm^2$ cells were killed in dose dependent manner 28.5%, 49.1%, 54.4%, 78.2%, and 84.6% at concentration of $1{\mu}g/ml$, $2.5{\mu}g/ml$, $5{\mu}g/ml$, $10{\mu}g/ml$ and $20{\mu}g/ml$, respectively. Dose dependent PDT lesions in both tumor and normal brain were observed. In the tumor lesion, only superficial tissue damage was found with optical irradiation of $35J/cm^2$. However, in the optical irradiation group of $140J/cm^2$ and $280J/cm^2$ the volume of lesions was measured of $7.2mm^3$ and $14.0mm^3$ for treatment at $140J/cm^2$ and $280J/cm^2$, respectively. The U-87 bearing rats showed a photofrin concentration in tumor tissue of $6.53{\pm}2.16{\mu}g/g$, 23 times higher than that found in the contralateral hemisphere of $0.28{\pm}0.15{\mu}g/g$. Conclusion : Our data indicate that the U-87 human glioma in vitro and in the xenografted rats is responsive to PDT. At these doses, a reproducible injury can be delivered to human glioma in this model. Strategies to spare the normal brain collateral damage are being studied.

  • PDF

Sequence and Time Interval in Combination of Irradiation and Cis-Diamminedichloroplatinum in C3H Mouse Fibrosarcoma (C3H 마우스 섬유육종에 있어서 방사선 조사와 Cis-diamminedichloroplatinum의 병용시 순서 및 시간간격의 영향)

  • Ha, Sung-Whan;Choi, Eun-Kyung;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Experiments have been carried out with C3H mouse fibrosarcoma (FSa II) to determine the effect of different sequence and time intervals between irradiation and administration of cis-diammihedichloroplatinum (cis-DDP) with gross tumors (6 mm in diameter), microscopic tumors (3 days after transplantation of $10^3$ cells) and cells in culture. The drug was administered either 24, 12, 8, 4, 2, 1, 0.5 hour before irradiation, immediately before irradiation, or 0.5, 1, 2, 4, 8, 12, 24 hours after irradiation. In case of in vivo studies, tumor growth delay was used as an end point. Clonogenic cell surviving fraction was used for in vitro studies. Tumor growth delay for gross tumor after 10 Gy radiation plus 10 mg/kg cis-DDP ranged from 6.3 to 10.66 days and the enhancement ratio ranged from 1.37 to 2.23. The most effective combination was when cis-DDP was given 4 hours before irradiation. Tumor growth delay for microscopic tumor after 5 Gy of radiation and 5 mg/kg of cis-DDP ranged from 3.55 to 11.98 days with enhancement ratio from 2.05 to 6.92. Microscopic tumors showed response significantly greater than additive in every time interval and the most effective treatments were when cis-DDP was given 2 and 1 hour before irradiation. In in vitro experiment, the surviving fraction after 6 Gy of radiation and 1 hour exposure to 4 ${\mu}M$ cis-DDP fluctuated as a function of time between treatments, but the difference between maximum and minimum surviving fractions was very small. According to the above results the sequence and time interval between irradiation and chemotherapy is very critical especially for the management of microscopic tumors as in the case of postoperative adjuvant treatment.

  • PDF

Evaluation of DNA Double Strand Breaks in Human and Mouse Lymphocyte Following ${\gamma}-Irradiation$ (${\gamma}-Ray$ 조사에 따른 사람의 정상임파구와 마우스 정상임파구의 DNA Double Strand Break 발생율에 대한 비교분석)

  • Kim Tae Hwan;Kim Sung Ho;Chung In Yong;Cho Chul Koo;Ko Kyung Hwan;Yoo Seong Yul
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 1993
  • The evaluation of radiation-induced DNA double strand breaks (DSB) was made following irradiation of human lymphocytes, murine lymphocytes and EL-4 leukemia cells over a wide dose range of $^{60}Co\;{gamma}-rays.$ In lipopolysaccharide (LPS) or phytohemagglutinin (PHA)-stimulated murine lymphocytes, the slopes of the stand scission factor (SSF) revealed that lymphocytes with LPS increased DNA DSB formation by a factor of 1.432 (p<0.005). Furthermore, strand break production was relatively inefficient in the T lymphocytes compared to the B lymuhocytes. And EL-4 leukemia cells were found to form significantly more DNA DSB to a greater extent than normal lymphocytes (p<0.005). The in vitro studies of the intrinsic radiosensitivity between human lymphocytes and murine lymphocytes showed similar phasic kinetics. However, murine lymphocytes were lower in DNA DSB formation and higher in the relative radiation dose of 10 percent DNA strand breaks at 3.5 hours following ${gamma}-irradiation$ than human lymphocytes. Though it is difficult to interpret these results, these differences may be result from environmental and genetic factors. From our data, if complementary explanations for this difference will be proposed, the differences in the dose-effect relationship for the induction of DSB between humans and mice must be related to interspecies variations in the physiological condition of the peripheral blood in vitro and not to differences in the intrinsic radiation sensitivity of the lymphocytes. These results can be estimated on the basis of dose-effect correlation enabling the interpretation of clinical response and the radiobiological parameters of cytometrical assessment.

  • PDF

Combined Effects of Gamma-irradiation and Hyperthermia on the Human Cell Lines for Various Temperatures and Time Sequences (감마선과 온열치료 병용시 세포 치사 능력 증강에 관한 실험적 연구)

  • Koh Kyung Hwan;Cho Chul Koo;Park Woo Yoon;Yoo Seong Yul;Yun Hyong Geun;Shim Jae Won;Lee Mi Jung
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • We tried to establish the theoretical basis of clinical use of combined modality of hyperthermia and radiation therapy. For this purpose, we made an in vitro experiment in order to get the synergistic and/or additive effects on the cell killing of hyperthermia combined with radiation therapy by using the microwave-hyperthermia machine already installed at our department. In our experiment, we use two human cell lines: MKN-45 (adenocarcinoma of stomach) and K-562 (leukemia cell lines). In cases of combined treatments of hyperthermia and gamma-irradiation, the therapeutic effect was the highest in the simultaneous trial. Hyperthermia after gamma irradiation showed slightly higher therapeutic effect than that before irradiation without significant difference, but its effect was the same in the interval of 6 hours between hyperthermia and irradiation. The higher temperature and the longer treatment time were applied, the higher therapeutic effects were observed. We could observe the thermoresistance by time elapse at $43^{\circ}C$. When hyperthermia was done for 30 minutes at the same temperature, thermal enhancement ratio (TER) at DO. 01 (dose required surviving fraction of 0.01) were $2.5{\pm}0.08,\;3.75{\pm}0.18$, and $5.0{\pm}0.15\;at\;436{\circ}C,\;44^{\circ}C,\;and\;45^{\circ}C$ respectively in K-562 leukemia cell lines. Our experimental data showed that more cell killing effect can be obtained in the leukemia cell lines, although they usually are known to be radiosensitive, when treated with combined hyperthermia and radiation therapy. Furthermore, our data show that leukemia cell lines may have various intrinsic radiosensitivity, especially in vitro experiments. The magnitude of cell killing effect, however, will be less than that of MKN-45.

  • PDF

Effects of $\gamma$-Irradiation on the Antiallergic Activity of Alginate

  • Song, Eu-Jin;Lee, So-Young;Kim, Koth-Bong-Woo-Ri;Park, Jin-Gyu;Kim, Jae-Hun;Lee, Ju-Woon;Byun, Myung-Woo;Ahn, Dong-Hyun
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1003-1009
    • /
    • 2008
  • This study was performed to determine the effects of $\gamma$-irradiation on the antiallergic activity of alginate. An alginate aqueous solution was $\gamma$-irradiated at 3, 5, 7, 10, 20, and 100 kGy. First, the molecular weight (Mw) of alginate rapidly decreased as the $\gamma$-irradiation dose increased up to 20 kGy. Then, the antiallergic activity of the $\gamma$-irradiated alginate was measured. Interlukin (IL)-4 cytokine and IgE level were significantly decreased in the $\gamma$-irradiated alginate groups as compared to the control group in vitro. The mice intraperitoneally administered with the $\gamma$-irradiated alginate exhibited lower ovalbumin-specific IgE and IgG1 level in serum than the control mice. Furthermore, the $\gamma$-irradiated alginate suppressed total and ovalbumin-specific IgE secretions in the splenocytes. Increased IL-2 level was observed in the culture supernatants of the splenocytes that were obtained from the mice administerd with the $\gamma$-irradiated alginate, while IL-4 level decreased. The present study indicates that $\gamma$-irradiated alginate can suppress allergy in a mouse allergy model.

Genotoxicological Safety of Gamma-Irradiated Salted and Fermented Anchovy Sauce (감마선 조사된 멸치액젓의 유전독성학적 안전성 평가)

  • 육홍선;차보숙;김동호;이주운;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1192-1200
    • /
    • 2004
  • Gamma irradiations at 5 or 10 kGy were applied to salted and fermented anchovy sauce, for improving the hygiene Quality and evaluating the genotoxicological safety. In vitro genotoxicological safety of irradiated sauces was evaluated by Salmonella Typhimurium (TA98, TA100, TAI535 and TAI537) and E. coli WP2 uvrA, reversion assay, SOS chromotest (Escherichia coli PQ37), and chromosome aberration test (Chinese hamster lung fibroblast cells) in the absence or presence of an exogenous metabolizing system (S9 mix). The gamma-irradiated samples were not significantly different from nonirradiated-control for three in vitro tests (p<0.05). :In vivo micronucleus test using ICR mice (male) was not significantly different from the control at p<0.05. The salted and fermented anchovy sauce exposed to 5 or 10 kGy-gamma ray revealed negative results in these three in vitro mutagenetic tests and in vivo micronucleus test upto 50,000 $\mu$g/plate, respectively. The results indicated that 5 or 10 kGy gamma-irradiated salted and fermented anchovy sauces did not show any mutagenicity.