• 제목/요약/키워드: In vitro RNA synthesis

검색결과 113건 처리시간 0.031초

Developing New Mammalian Gene Expression Systems Using the Infectious cDNA Molecular Clone of the Japanese Encephalitis Virus

  • Yun Sang-Im;Choi Yu-Jeong;Park Jun-Sun;Kim Seok-Yong;Lee Young-Min
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2003년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.83-86
    • /
    • 2003
  • Major advances in positive-sense RNA virus research have been facilitated by the development of reverse genetics systems. These systems consist of an infectious cDNA clone that encompasses the genome of the virus in question. This clone is then used as a template for the subsequent synthesis of infectious RNA for the generation of synthetic viruses. However, the construction of infectious cDNA for the Japanese encephalitis virus (JEV) has been repeatedly thwarted by the instability of its cDNA. As JEV is an important human pathogen that causes permanent neuropsychiatric sequelae and even fatal disease, a reliable reverse genetics system for this virus is highly desirable. The availability of this tool would greatly and the development of effective vaccines as well as facilitate studies into the basic biology of the virus, including the molecular mechanisms of viral replication, neurovirulence, and pathogenesis. We have successfully constructed a genetically stable infectious JEV cDNA containing full-length viral RNA genome. Synthetic RNA transcripts generated in vitro from the cDNA were highly infectious upon transfection into susceptible cells, and the cDNA remained stable after it had been propagated in E. coli for 180 generations. Using this infectious JEV cDNA, we have successfully expressed a variety of reporter genes from the full-length genomic and various subgenomic RNAs in vitro transcribed from functional JEV cDNAS. In summary, we have developed a reverse genetics system for JEV that will greatly facilitate the research on this virus in a variety of different fields. It will also be useful as a heterologous gene expression vector and aid the development of a vaccine against JEV.

  • PDF

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • 남기연;정동훈;최재원;이윤성;이평우
    • 대한바이러스학회지
    • /
    • 제29권4호
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Puromycin과 Actinomycin D가 卵丘細胞의 分散에 미치는 影響 (Effects of Puromycin and Actinomycin D on the HCG-Induced Expansion of Cumulus Oophorus in vitro)

  • Kwon, Hyuk-Bang
    • 한국동물학회지
    • /
    • 제26권4호
    • /
    • pp.225-233
    • /
    • 1983
  • 哺乳動物의 排卵時 濾胞卵子의 成熟再開와 더불어 卵子를 緻密하게 둘러싸고 있는 卵子細胞들의 分散이 일어난다. 이 現象은 生殖巢刺戟호르몬의 促進을 받은 卵丘細胞들이 細胞間隔에 多量의 뮤코量을 分泌함으로써 이루어지는데 이 때 cAMP가 第二 傳達者로 作用을 한다고 알려져 있다. 본 實驗에서는 卵子-卵丘 複合體를 培養하면서 HCG (10 IU/ml)에 의해 誘導된 卵丘細胞의 分散에 puromycin과 actinomycin D가 미치는 영향을 調査한 바 다음과 같은 缺課를 얻었다. 1. Puromycin은 2 $\\mu$g/ml의 濃度에서 卵丘細胞의 分散을 현저히 抑制하였으며 이 效果는 可逆的이었다. 2. Puromycin의 分散抑制效果는 HCG의 刺戟기간 (3시간) 뿐 아니라 뮤코量의 合成時期 ($3\\sim18$시간)에서도 나타났다. 3. Actinomycin D는 0.025 $\\mu$g/ml의 濃度에서부터 卵丘細胞의 分散을 抑制하기 시작했다. 4. Actinomycin D의 分散抑制效果는 부분적인 可逆性을 나타내었으며 0.1 $\\mu$g/ml의 濃度에서는 非可逆的인 災害效果를 나타내었다. 위의 缺課로부터 HCG의 卵丘細胞 分散誘導過程에는 蛋白質 내지 RNA의 合成過程이 관여하는 것으로 測定되며 따라서 cAMP는 轉寫 내지 解讀水準에서 卵丘細胞의 分散을 調節하는 것 같다.

  • PDF

In vitro Translation and Methylation of Iso-1-Cytochrome C from Saccharomyces Cerevisiae

  • Paik, Woon-Ki;Park, Kwang-Sook;Tuck, Martin;Kim, Sang-Duk
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.505.1-505
    • /
    • 1986
  • The gene for iso-1-cytochrome c for Saccharomyces cerevisiae was recloned into a pSP65 vector containing an active bacteriophage SP6 promoter. The iso-1-cytochrome c gene was cloned as an 856 bp Xho 1-Hind III fragment. When the resulting plasmid was digested at the Hind 111 site 279 bases downstream from the termination codon of the gene and transcribed in vitro using SP6 RNA polymerase, full length transcripts were produced. The SP6 iso-1-cytochrome c mRNA was translated using a rabbit reticulocyte lysate system and the protein products analyzed on SDS polyacrylamide gels. One major band was detected by autofluorography. This band was found to have a molecular weight of 12,000 Da and coincided with the Coomassie staining band of apocytochrome c from S. cerebisiae. The product was also shown to be identical with that of standard yeast apocytochrome c on an isoelectric focusing gel. The in vitro synthesized iso-a-cytochrome c was methylated by adding partially purified S-adenosyl-L-methionine . protein-lysine N-methyltransferase (Protein methylase III; EC 2.1.1.43) from S. cerevisiae along with S-adenosyl-L-methionine to the in vitro translation mixtures. The methylation was shown to be inhibited by the addition of the methylase inhibitor S-adenosyl-L-homocysteine or the protein synthesis inhibitor pu omycin. The methyl derivatives in the protein were identified as $\varepsilon$-N-mono, di and trimethyllysine by amino acid analysis. The molar ratio of methyl groups incorporated to that of cytochrome c molecules synthesized showed that 23% of the translated cytochrome c molecules were methylated by protein methylase III.

  • PDF

Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들 (Non-ribosomal Ribosome Assembly Factors in Escherichia coli)

  • 최은실;황지환
    • 생명과학회지
    • /
    • 제24권8호
    • /
    • pp.915-926
    • /
    • 2014
  • 리보솜은 mRNA상의 유전정보를 단백질로 번역하는 세포에 필수적인 거대복합체이다. 이러한 리보솜은 리보 핵산단백질 복합체로, rRNA와 리보솜 단백질로 이루어져있다. 리보솜 조립과정은 리보솜 단백질 이외에도 많은 조립인자들이 각 구성요소의 조립을 도움으로써 이루어진다. 세포 내 리보솜 조립과정에 참여하는 조립인자들로 GTPase, ATPase, 샤페론, RNA helicase, 수식효소 등 다양한 단백질들이 알려졌다. 리보솜 조립과정 중 이러한 조립인자들은 리보솜 단백질 또는 rRNA의 수식에 참여하거나, 리보솜 단백질들과 rRNA의 조립 등을 돕는다. 이러한 리보솜 조립인자들에 관한 유전학적, 구조적, 생화학적 실험결과들이 많이 존재하지만 정확한 리보솜 조립과정과 이러한 조립인자들의 역할에 대해서는 아직 밝혀지지 않았다. 현재까지의 연구결과를 바탕으로 E. coli의 리보솜 조립과정을 돕는 단백질들에 대하여 알아보고자 한다.

Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression

  • Jung, Yun Hee;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.70-84
    • /
    • 2022
  • Purpose: Skeletal muscles display significant heterogeneity in metabolic responses, owing to the composition of metabolically distinct fiber types. Recently, numerous studies have reported that in skeletal muscles, suppression of genes related to fatty acid channeling alters the triacylglycerol (TAG) synthesis and switches the energy substrates. However, such responses may differ, depending on the type of muscle fiber. Hence, we conducted in vitro and animal studies to compare the metabolic responses of different types of skeletal muscle fibers to the deficiency of fatty acyl-CoA synthetase (Acsl)6, one of the main fatty acid-activating enzymes. Methods: Differentiated skeletal myotubes were transfected with selected Acsl6 short interfering RNA (siRNA), and C57BL/6J mice were subjected to siRNA to induce Acsl6 deficiency. TAG accumulation and expression levels of insulin signaling proteins in response to acute glucose supplementation were measured in immortalized cell-based skeletal myotubes, oxidative muscles (OM), and glycolytic muscles (GM) derived from the animals. Results: Under conditions of high glucose supplementation, suppression of the Acsl6 gene resulted in decreased TAG and glycogen synthesis in the C2C12 skeletal myotubes. The expression of Glut4, a glucose transporter, was similarly downregulated. In the animal study, the level of TAG accumulation in OM was higher than levels determined in GM. However, a similar decrease in TAG accumulation was obtained in the two muscle types in response to Acsl6 suppression. Moreover, Acsl6 suppression enhanced the phosphorylation of insulin signaling proteins (Foxo-1, mTORc-1) only in GM, while no such changes were observed in OM. In addition, the induction ratio of phosphorylated proteins in response to glucose or Acsl6 suppression was significantly higher in GM than in OM. Conclusion: The results of this study demonstrate that Acsl6 differentially regulates the energy metabolism of skeletal muscles in response to glucose supplementation, thereby indicating that the fiber type or fiber composition of mixed muscles may skew the results of metabolic studies.

키토산이 치주인대 섬유아세포에 미치는 영향 (The effects of chitosan on the human periodontal ligament fibroblasts in vitro)

  • 백정원;이현정;유윤정;조규성;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

Expression and Localization of Heat Shock Protein 70 in Frozen-Thawed IVF and Nuclear Transfrred Bovine Embryos

  • Park, Y.J;S.J Song;J.T Do;B.S Yoon;Kim, A.J;K.S Chung;Lee, H.T
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.78-78
    • /
    • 2002
  • The role of heat shock proteins in shielding organism from environmental stress is illustrated by the large-scale synthesis of these protein by the organism studied to date. However, recent evidence also suggests an important role for heat shock protein in fertilization and early development of mammalian embryos. Effects of elevated in vitro temperature on in vitro produced bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (HSP70) by control and frozen-thawed after in vitro fertilization (IVF) or nuclear transfer (NT). The objective of this study was to assess the developmental potential in vitro produced embryos with using of the various containers and examined expression and localization of heat shock protein 70 after it's frozen -thawed. For the vitrification, in vitro produced embryos at 2 cell, 8 cell and blastocysts stage after IVF and NT were exposed the ethylene glycol 5.5 M freezing solution (EG 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min, and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid, cryo-loop. However, survival rates by straw were relatively lower than other containers. Only, nuclear transferred embryos survived by using cryo-loop. After IVF or NT, in vitro matured bovine embryos 2 cell, 8 cell and blastocysts subjected to control and thawed conditions were analysed by semiquantitive reverse transcription polymerase chain reaction methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNA were higher thawed embryos than control embryos. Immunocytochemistry used to localization the hsp70 protein in embryos. Two, 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed frozen-thawed. However, under control condition, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform in distribution.

  • PDF

In Vitro에서 니코틴이 치주인대세포에 미치는 세포분열효과에 대한 연구 (MITOGENIC EFFECTS OF NICOTINE TO HUMAN PERIODONTAL LIGAMENT(PDL) CELLS IN VITRO)

  • 노준;전윤식
    • 대한치과교정학회지
    • /
    • 제27권6호
    • /
    • pp.955-961
    • /
    • 1997
  • 흡연의 주성분중의 하나인 니코틴은 인체내에 다양한 전신적 및 국소적인 질환의 원인으로 보고 되어지고 있다. 전신적인 질환에 있어 특히, 호흡기와 순환기 조직세포에 대한 세포분열효과가 많은 연구의 초점이 되어왔으며, 국소적인 효과에 대한 연구에서는 조직파괴나 치료후 치유지연에 대해 보고하고 있다. Platelet-Derived Growth Factor(PDGF)와 Insulin-like Growth Factor(IGF)는 치주인대세포의 세포분열을 촉진하는 주요 성장인자로 알려져있다. 본 연구의 목적은 니코틴이 사람의 치주인대세포에 미치는 세포분열효과를 알아보기 위하여 니코틴 처리된 치주인대세포로부터 추출한 PDGF-${\alpha}\;and\;{\beta}$ receptor 및 IGF-l 수용기의 mRNA변화를 Northern분석을 이용해 확인해 보고자 함이다. 실험군은 각기 다른 농도의 니코틴(100ng/ml, 1000mg/ml)과 배양액내 혈청농도($1\%,\;10\%$)로 나누었으며 이를 각각 니코틴 처리 시간에 따라 분류하였다. 본연구의 결과로 $10\%$ 혈청의 배양액과 100ng/ml 니코틴 농도군에서 모든 성장인자 수용체의 mRNA가 증가됨을 보였으며 이는 흡연자의 체내 축적 가능한 니코틴 농도에서 치주인대세포의 세포분열을 촉진한다는 추측을 가능케 한다.

  • PDF