• Title/Summary/Keyword: In vitro RNA synthesis

Search Result 111, Processing Time 0.021 seconds

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

Enhanced In Vitro Protein Synthesis Through Optimal Design of PCR Primers

  • Ahn Jin-Ho;Son Jeong-Mi;Hwang Mi-Yeon;Kim Tae-Wan;Park Chang-Kil;Choi Cha-Yong;Kim Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.355-359
    • /
    • 2006
  • The functional stability of mRNA is one of the crucial factors affecting the efficiency of in vitro translation. As the rapid degradation of mRNA in the cell extract (S30 extract) causes early termination of the translational reactions, extending the mRNA half-life will improve the productivity of the in vitro protein synthesis. Thus, a simple PCR-based method is introduced to increase the stability of mRNA in an S30 extract. The target genes are PCR-amplified with primers designed to make the ends of the transcribed mRNA molecule anneal to each other. When compared with normal mRNA, the mRNA with the annealing sequences resulted in an approximately 2-fold increase of protein synthesis in an in vitro translation reaction. In addition, sequential transcription and translation reactions in a single tube enabled direct protein expression from the PCR-amplified genes without any separate purification of the mRNA.

MUSCLE PROTEIN SYNTHESIS IN VITRO IN CHICKS FED A LOW-PROTEIN DIET

  • Kita, K.;Kuzuya, Y.;Matsunami, S.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.171-174
    • /
    • 1996
  • Muscle protein synthesis in vitro was measured in chicks fed low-protein(10% CP) and control(20% CP) diets. Right leg muscles (M. gastrocnemius) were mounted on a support made of stainless steel to stretch in constant tension, whereas left leg muscles were unmounted. Both leg muscles were incubated in Dulbecco's modified Eagle's medium including L-[$4-^3H$] phenylalanine for 60 min to measure in vitro protein synthesis. There was no significant difference in fractional synthesis rate(FSR) of muscle protein between both dietary protein levels, whereas FSR with stretch in constant tension was significantly higher than that without constant tension due to an increase in the absolute synthesis rate(ASR) per unit RNA(the efficiency of RNA to synthesize protein). The ASR of muscle protein in chicks fed the control diet was significantly higher than that in the low-protein diet group.

In vitro Synthesis of Ribonucleic Acids by T7 RNA Polymerase That was Fast Purified with a Modified Procedure (변형된 방법으로 신속히 정제된 T7 RNA 중합효소를 이용한 리보핵산의 시험관 내 합성)

  • Kim Ki-Sun;Choi Woo-Hyung;Gong Soo-Jung;Jeon Sung-Jong;Kim Jae Hyun;Oh Sangtaek;Kim Dong-Eun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.755-762
    • /
    • 2005
  • Biochemical amounts of RNA molecules can be synthesized in vitro, which is functionally equivalent or similar to those transcripts normally existing at extremely low levels in vivo. In this study we described a method for efficient preparation of pure T7 RNA polymerase from Escherichia coli strain BL21/pAR1219. The procedure, which used ammonium sulfate fractionation and preparative column chromatography on sephadex SP, was shown to be simple, rapid, and cost effective in comparison with other methods reported previously, Using the purified T7 RNA polymerase we were able to synthesize very long RNA transcript of 1.54 kb length, which is not feasible by conventional chemical synthesis. RNA molecule that was also synthesized by the purified T7 RNA polymerase, such as hammerhead ribozyme, retained its biochemical activity by cleaving the target RNA successfully in vitro. Thus, the procedure shown in this study can be useful to synthesize any length of RNA molecules in vitro in a simple and cost effective way for a variety of purposes.

Mutational analsysis of phage SP6 transcription initiation and a new transcription vector

  • Kang, Changwong;Nam, Sang-Chul;Lee, In-Woo
    • The Microorganisms and Industry
    • /
    • v.14 no.1
    • /
    • pp.7-11
    • /
    • 1988
  • Efficient in vitro RNA synthesis can be easily accomplished from cloned DNA using bactrio-phage SP6, T7 or T3 RNA polymerase. Despite its popularity as in vitro transcription system, molecular mechanisms of bacteriophage transcription has not been studied, although physical and catalytic properties of several phage RNA polymerases have well been documented (1). Only recently the T7 promoter has been physically mapped by footprinting of the T7 RNA polymerase (2,3). These simple phage systems, however, could be useful for detailed molecular studies of transcription.

  • PDF

Recyclable single-stranded DNA template for synthesis of siRNAs

  • Ali, Mussa M.;Obregon, Demian;Agrawal, Krishna C.;Mansour, Mahmoud;Abdel-Mageed, Asim B.
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.732-737
    • /
    • 2010
  • RNA interference is a post-transcriptional silencing mechanism triggered by the bioavailability and/or exogenous introduction of double-stranded RNA (dsRNA) into cells. Here we describe a novel method for the synthesis of siRNA in a single vessel. The method employs in vitro transcription and a single-stranded DNA (ssDNA) template and design, which incorporates upon self-annealing, two promoters, two templates, and three loop regions. Using this method of synthesis we generated efficacious siRNAs designed to silence both exogenous and endogenous genes in mammalian cells. Due to its unique design the single-stranded template is easily amenable to adaptation for attachment to surface platforms for synthesis of siRNAs. A siRNA synthesis platform was generated using a 3' end-biotinylated ssDNA template tethered to a streptavidin coated surface that generates stable siRNAs under multiple cycles of production. Together these data demonstrate a unique and robust method for scalable siRNA synthesis with potential application in RNAi-based array systems.

Preparation Method for Escherichia coliS30 Extracts Completely Dependent upon tRNA Addition to Catalyze Cell-free Protein Synthesis

  • Ahn, Jin-Ho;Hwang, Mi-Yeon;Oh, In-Seok;Park, Kyung-Moon;Hahn, Geun-Hee;Choi, Cha-Yong;Kim, Dong-Myung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.420-424
    • /
    • 2006
  • A simple method for depleting E. coliS30 extracts of endogenous tRNA has been developed. An $ethanolamine-Sepharose^{(R)}$ column equilibrated with water selectively captured the tRNA molecules in E. coli S30 extracts. As a result, S30 extracts filtered through this column became completely dependent upon the addition of exogenous tRNA to mediate cell-free protein synthesis reactions. We anticipate that the procedures developed and described will be particularly useful for in vitro suppression reaction studies designed to introduce unnatural amino acids into protein molecules.

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli

  • Lee, Jung-Min;Kim, Yool;Hong, Soon-Kang;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1137-1140
    • /
    • 2008
  • M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of tRNA precursors (ptRNAs). Using KS2003, an E. coli strain generating only low levels of M1 RNA, which showed growth defects, we examined whether M1 RNA is involved in polycistronic mRNA processing or degradation. Microarray analysis of total RNA from KS2003 revealed six polycistronic operon mRNAs (acpP-fabF, cysDNC, flgAMN, lepAB, phoPQ, and puuCBE) showing large differences in expression between the adjacent genes in the same mRNA transcript compared with the KS2001 wild type strain. Model substrates spanning an adjacent pair of genes for each polycistronic mRNA were tested for RNase P cleavage in vitro. Five model RNAs (cysNC, flgMN, lepAB, phoPQ, and puuBE) were cleaved by RNase P holoenzyme but not by M1 RNA alone. However, the cleavages occurred at non-ptRNA-like cleavage sites, with much less efficiency than the cleavage of ptRNA. Since cleavage products generated by RNase P from a polycistronic mRNA can have different in vivo stabilities, our results suggest that RNase P cleavage may lead to differential expression of each cistron.