• Title/Summary/Keyword: In situ distribution

Search Result 532, Processing Time 0.027 seconds

Estimation In-Situ Rockfall Block Weight Distribution Using Scan-Line Survey Results and Examination its applicability in Practical Rockfall Analysis (선조사 결과에 의한 실제낙석무게분포의 추정과 설계적용성 검토)

  • Kim, Su-Chul;Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.639-648
    • /
    • 2005
  • Up to now, practical engineers applying simplicity value of rockfall block weight suggested in design manual without considering in-situ rockfall block weight which reflect joint characteristics. However, the size of rockfall block varies with joint spacing of discontinuities and influences over rockfall analysis results. In this paper, we estimate realistic rockfall block weight distribution using statistical invariances of joint spacing derived from scan-line survey result. And, we study whether this distribution is applicable in practical rockfall analysis directly. As the results of this study, rockfall analysis results that using rockfall block weight distribution estimated from scan-line survey show resonable and realistic outcomes.

  • PDF

In situ Particle Size and Volume Concentration of Suspended Sediment in Seomjin River Estuary, Determined by an Optical Instrument,'LISST-100' (현장입도분석기를 이용한 섬진강하구 부유퇴적물의 특성 연구)

  • KIM Seok Yun;LEE Byoung Kwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2004
  • In situ particle size and volume concentration of suspended sediment was measured at the mouth of Seomjin River Estuary In February 2001, using an optical instrument, 'LISST-100'. Time variation of in situ particle size and concentration shows: (1) during ebb tide, Seomjin River supplies relatively fine-grained particles with less-fluctuated, compared to during flood tide, and well-behaved concentrations following the tidal cycle; and (2) during flood tide, relatively coarse-grained particles with highly variable in size distribution and concentration flow upstream from Kwangyang Bay. This explains a poor correlation $(r^{2}=0.10)$ between sediment concentration and beam attenuation coefficient during flood and a high degree of correlation $(r^{2}=0.80)$ during ebb tide. Relatively fine grained and well defined, monotonous size distribution may promote the correlation between concentration and beam attenuation coefficient due to optical homogeneity of particles during ebb tide. Abundance of large aggregates with time-varying size and shape distributions may be mainly responsible for variations in optical properties of the sediment during flood tide, and thus may confound the relationship between the two variables. The difference in particle sizes and shapes between flood and ebb tides can also be observed on SEM images.

Community structure analysis of nitrifying biofilms by 16S rRNA targeted probe and fluorescence in situ hybridization (FISH)

  • Han, Dong-U;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.282-285
    • /
    • 2001
  • The microbial community structure and in situ spatial distribution of ammonia oxidizing and nitrite oxidizing bacteria in nitrifying biofilm of an upflow biological aerated filter system were investigated. The reactor had been continuously operated under high free ammonia concentration and low DO concentration for nitrite accumulation more than 2 years before the experiment. Fluorescence in situ hybridization

  • PDF

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.

Correcting the Sound Velocity of the Sediments in the Southwestern Part of the East Sea, Korea (동해 남서해역 퇴적물의 음파전달속도 보정)

  • Kim, Sora;Kim, Daechoul;Lee, Gwang-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.408-419
    • /
    • 2016
  • To investigate the in-situ sound velocity of sediment in the southwestern part of the East Sea, the laboratory sound velocity was measured using the pulse transmission technique. The sediment sound velocity measured in laboratory was corrected to in-situ sound velocity based on the seafloor temperature, seawater sound velocity, Kim et al. (2004) model, and Hamilton (1980) model. The distribution of the corrected in-situ sound velocity applying Kim et al. (2004) and Hamilton (1980) models reflects the characteristics of sediments of the study area and shows a similar distribution pattern. The correction for in-situ sound velocity was mostly influenced by seafloor temperature. Then, correction of sound velocity using seafloor sediment temperature data should be accomplished for conversion of laboratory data to in-situ sound velocity.

Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204 (압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204)

  • Lee Young-Joo
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.165-176
    • /
    • 2005
  • Natural gas in deep sediment may occur in three phases based on the physical and chemical conditions. If the concentration of gas in pore water is less than the solubility, gas is dissolved. If the concentration of gas is greater than its solubility (water is saturated or supersaturated with gas), gas occurs as a fee gas below the gas hydrate stability Lone (GHSZ) and is present as solid hydrate within the GHSZ. The knowledge of gas concentration in deep sediment appears critical to determine the phase of natural gases and to understand the formation and distribution of gas hydrate. However, reliable data on gas concentration are usually available only from the upper section of marine sediment by the headspace gas technique, which is widely used for sampling of gases from the sediments. The headspace gas technique represents only a fraction of gases present in situ because sediments release most of the gases during recovery and sampling. The PCS (Pressure Core Sampler) is a downhole tool developed to recover a nominal $1{\cal}m$ long, $4.32{\cal}cm$ diameter core containing $1,465cm^3$ of sediment, pore water and gas at in situ pressure up to 68.9 MPa. During Leg 204, the PCS was deployed at 6 Sites. In situ methane gas concentration and distribution of gas hydrate was measured by using PCS tool. Characteristics of methane concentration and distribution is different from site to site. Distribution of gas hydrate in the study area is closely related to characteristics of in situ gas concentration measured by PCS.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

High-Quality Epitaxial Low Temperature Growth of In Situ Phosphorus-Doped Si Films by Promotion Dispersion of Native Oxides (자연 산화물 분산 촉진에 의한 실 시간 인 도핑 실리콘의 고품질 에피택셜 저온 성장)

  • 김홍승;심규환;이승윤;이정용;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.125-130
    • /
    • 2000
  • Two step growth of reduced pressure chemical vapor eposition has been successfully developed to achieve in-situ phosphorus-doped silicon epilayers, and the characteristic evolution on their microstructures has been investigated using scanning electron microscopy, transmission electron microscopy, and secondary ion mass spectroscopy. The two step growth, which employs heavily in-situ P doped silicon buffer layer grown at low temperature, proposes crucial advantages in manipulating crystal structures of in-situ phosphorus doped silicon. In particular, our experimental results showed that with annealing of the heavily P doped silicon buffer layers, high-quality epitaxial silicon layers grew on it. the heavily doped phosphorus in buffer layers introduces into native oxide and plays an important role in promoting the dispersion of native oxides. Furthermore, the phosphorus doping concentration remains uniform depth distribution in high quality single crystalline Si films obtained by the two step growth.

  • PDF

Field Measurement of Suspended Material Distribution at the River Confluence (하천 합류부에서의 부유입자 분포에 대한 현장측정)

  • Kwak, Sunghyun;Lee, Kyungsu;Cho, Hanil;Seo, Yongjae;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.467-474
    • /
    • 2017
  • Each river confluence has the inherent hydraulic and mixing characteristics coming from its bathymetry and topography. It is necessary to make the measurement covering the spatial extent of studying area in order to catch these 2-dimensional intrinsic characteristics. This study focuses to investigate the hydraulic and mixing characteristics at the confluence of Nakdong and Geumho River, from field measurement of flow, water quality, and suspended particle distribution with ADCP (Riversurveyor M9), multi-parameter water quality sonde (YSI6600V2), and submersible system for in-situ observations of particle size distribution and volume concentration (LISST : Laser In-Situ Scattering & Transmissometry), respectively. From the results, it can be found that the field measurement of suspended particle and water quality distribution can be the useful approach to catch the hydraulic and mixing characteristics at a river confluence.

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF