• Title/Summary/Keyword: In densification

Search Result 817, Processing Time 0.028 seconds

Effects of Phase Fraction and Metallic Glass-Diamond Size Ratio on the Densification of Metallic Glass/Diamond Composite (비정질/다이아몬드 복합재료에서 상분율과 비정질-다이아몬드 입자 크기 비가 성형특성에 미치는 영향)

  • Shin, Su-Min;Kim, Taek-Soo;Kang, Seung-Koo;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.173-179
    • /
    • 2009
  • In the present study, Zr-base metallic glass(MG)/diamond composites are fabricated using a combination of gas-atomization and spark plasma sintering (SPS). The densification behaviors of mixtures of soft MG and hard diamond powders during consolidation process are investigated. The influence of mixture characteristics on the densification is discussed and several mechanism explaining the influence of diamond particles on consolidation behaviour are proposed. The experimental results show that consolidation is enhanced with increasing diamond/Metallic Glass(MG) size ratio, while the diamond fraction is fixed.

A Densification Model for Mixed Metal Powder under Cold Coompaction (냉간압축하에서 혼합금속분말의 치밀화 모델)

  • 조진호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Densification Behavior of Dissimilar Material Powder during Die Compaction (금형압축 하에서 구리/철 이종재료 분말의 치밀화 거동)

  • Kim, Taek-Eui;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.379-386
    • /
    • 2008
  • Densification behavior of dissimilar material powder (copper and pure iron powder) under die compaction was investigated. Experimental data were obtained for copper and pure iron powder compacts with various volume ratios under die compaction. Dissimilar material powder was simultaneously compacted into a jointed cylindrical compact with different powder materials in inner and outer part, respectively. To simulate densification behavior of dissimilar material powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under die compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution of powder compacts under die compaction.

Densification Behavior of Metal Powder under Cold Compaction (냉간 압축 하에서 금속 분말의 치밀화 거동)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.652-657
    • /
    • 2001
  • Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

  • PDF

Finite Element Analysis for High Temperature Densification Processing of Alumina Powder Compacts (알루미나 분말 성형체의 고온 치밀화 성형 공정을 위한 유한요소 해석)

  • 권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.347-358
    • /
    • 1994
  • Creep densification and grain growth of alumina powder compacts during high temperature processing were investigated. The creep densification and grain growth of alumina powder compacts during various sintering processes were analyzed by employing the consitutive model by Kwon and Kim. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. The effects of friction between die and powder compact or punch and powder compact during sinter forging and hot pressing are investigated by using the finite element method. Also, high temperature forming processing of alumina compact with complicated shape was simulated.

  • PDF

Densification and Grain Growth Behavior of MgO and TiO2-doped Alumina (MgO 및 TiO2가 첨가된 알루미나의 치밀화와 입성장 거동)

  • Lee, Jung-A;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1083-1089
    • /
    • 2002
  • Densification and grain growth behavior of MgO and -doped alumina ceramics were investigated. MgO was found to inhibit grain growth and to promote densification, but acted to promote grain growth more than densification. The density which showed the maximum shrinkage rate was investigated in the plot of shrinkage rate versus density. The data suggests that the maximum shrinkage rate separates the two kinetic regimes, below the density of maximum shrinkage, the regime associated with densification and above the maxima, the regime associated with the grain growth. The plot exhibits a maximum which shifts to higher temperatures with MgO doping and to lower with doping.

Densification Mechanism of NITE-SiC and $SiC_f/SiC$ Composites

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun;Park, Jun-Soo;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.181-184
    • /
    • 2006
  • Nano Infiltration Transient Eutectic Phase - Silicon Carbide (NITE-SiC) and $SiC_f/SiC$ composite have been fabricated by a Hot Pressing (HP) process, using SiC powder with an average size of about 30nm. Alumina ($Al_2O_3$) and Yttria ($Y_2O_3$) were used for additives materials. These mixed powders were sintered at the temperature a of $1300^{\circ}C$, $1650^{\circ}C$, $1800^{\circ}C$ and $1900^{\circ}C$ under an applied pressure of 20MPa. And unidirection and two dimension woven structures of $SiC_f/SiC$ composites were prepared starting from Tyranno SA fiber. Densification of microstructure gives an effect to density. Specially, Densification Mechanism basically is important from the sintering which use the HP. In this study, the densification of NITE-SiC and $SiC_f/SiC$ composite mechanism by a press displacement appears investigated. The mechanism on the densification of each sintering temperature was investigated. The each step is shows a with each other different mechanism quality.

  • PDF

A Study on the Densifcation of Stellite Fine Powder for Iniection Molding (사출성형용 Stellite미분말의 소결 치밀화에 관한 연구)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • The densification of the compacts of Co+32%Cr+20%W+l.5%C, Co+32%Cr+20%W+3.0%C and Co+32%Cr+20%W+4.5%C sintered under $H_2$ gas or vacuum was investigated. The effect of V and B addition on the densification was also investigated. The densification of these compacts were always incomplete regardless of sintering atmosphere, temperature and time. The amounts of oxygen and carbon in compacts sintered in $H_2$ for 3.6ks at 1523K were 0.105~0.160 mass% and 0.33~0.89 mass%, respectively. And those in vacuum were 0.028~0.032% and 0.957~4.08%, respectively. Relative density(Ds) of Co+29%Cr+17%W+3.0%C compact containing 6%V and Co+32%Cr+20%W+2.97%C compact containing 0.03%B were 99 and 100%, respectively, indicating complete densification by solid phase sintering. Victors hardness of sintered compacts containing 6%V or 0.03%B were 632 and 568, showing 50~60% increase in comparison to those without V or B. These results can be explained in terms of oxidation/reduction of oxides and equilibrium pressure of CO in isolated pore, instead of presence of liquid formation and grain boundary separation from pores due to large grain growth.

  • PDF

Effects of Particle Size of Alumina on Densification Behavior in ZTA (ZTA 제조시 알루미나 입자크기가 치밀화 거동에 미치는 영향)

  • Chae, Jihoon;Cho, Bumrae
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.250-254
    • /
    • 2013
  • In order to increase the toughness of ZTA(zirconia toughened alumina) ceramics, the present study focused on rearrangement and densification of particles according to the particle size of the parent material. When rough alumina was used for production of ZTA, densification behavior was observed in the specimen sintered at a temperature over $1550^{\circ}C$. However, it was found that the densification behavior was occurred in the specimen sintered at $1450^{\circ}C$ when fine alumina powder was used. High relative density exceeding 98% was obtained when fine alumina powder was mixed with 15 wt% of 3Y-TZP and sintered at $1600^{\circ}C$. Also, a hardness of 1820.2 Hv was obtained when a specimen containing 10 wt% of 3Y-TZP was sintered at $1600^{\circ}C$. In the case of 3Y-TZP containing rough alumina powder that had been sintered the hardness value was around 1720.3 Hv. It was predicted that an improved toughening effect in ZTA could be achieved by using finer alumina powder as the parent material.

A Mechanistic Model for In-Reactor Densification of U$O_2$ (U$O_2$ 핵연료의 노내 기계론적 고밀화 모형)

  • Woan Hwang;Keum Seok Seo;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.116-128
    • /
    • 1985
  • Considering vacancy generation and migration in grain and sink at grain boundary, a mechanistic densification model which is dependent on UO$_2$ temperature and microstructure has been developed. This densification model is a function of time, fission rate, temperature, density, pore size distribution and grain size. The resultant equation derived in this model which is different from Assmann and Stehle's resultant equations for four temperature regions, can be applied directly for all the pellet temperatures. The predictions of the present densification model very well agreed with the experimental data. This model well predicts absolute magnitude and trend in comparison with the empirical algorithm used in KFEDA code.

  • PDF